Высота правильной четырёхугольной пирамиды равна 12 см, а сторона основания равна 24 см. Вычисли двугранный угол при основании.
——————————————————
Основание правильной четырехугольной пирамиды – квадрат.
Все боковые грани правильной пирамиды образуют с плоскостью основания равные углы, а высота проходит через центр основания, который является центром вписанной и описанной около основания окружностей.
Двугранный угол здесь образован радиусом вписанной окружности и апофемой, как отрезками. перпендикулярными ребру основания в одной точке (по т. о трех перпендикулярах).
Радиус вписанной в квадрат окружности равен половине его стороны.
r=24:2=12 (см)
Соединив основание апофемы с центром основания ( основанием высоты пирамиды), получим прямоугольный треугольник.
При этом катеты- высота пирамиды и половина стороны основания - равны 12 см.
Следовательно, треугольник - равнобедренный. Острые углы равнобедренного прямоугольного треугольника равны 45º.⇒ Искомый угол равен 45º.
АС=АЕ+ЕС=3+8=11
Опустим высоту ВН на АС, она же является медианой (АН=НС=АС/2=5,5).
ЕН=АН-АЕ=5,5-3=2,5
Из прямоугольного ΔВЕН найдем ВН:
ВН=ЕН*tg 60=2.5*√3
Из прямоугольного ΔАВН найдем АВ:
АВ²=АН²+ВН²=5,5²+(2.5*√3)²=49
АВ=7