18. пятиугольник abcde вписан в окружность. из вершины а опущены перпендикуляры af, ah, ap и aq на прямые de, be, cd и вс соответственно. а) докажите, что угол fah равен углу paq. б) найдите ан, если af = a, ap = b, aq = c.
А) Поскольку четырехугольники AHEF и AQCP имеют (каждый) по 2 прямых угла, а четырехугольник BCDE - вписанный, то ∠FAH = 180° - ∠FEH = ∠BED = 180° - ∠BCD = ∠PAQ; б) ∠QCA = ∠HEA; это вписанные углы, опирающиеся на дугу AB; поэтому прямоугольные треугольники QCA и AHE подобны. ∠AEF = ∠ACP; так как оба они в сумме с углом AED дают 180°. поэтому подобны прямоугольные треугольники AFE и ACP. Отсюда легко составить пропорции c/AC = x/AE; (x = AH); b/AC = a/AE; если одно разделить на другое, получится c/b = x/a; x = ac/b;
Общее уравнение прямой у=kx+b Точка А принадлежит прямой, значит её координаты удовлетворяют уравнению х=1, у=-4 -4=k·1+b (*) Точка В принадлежит прямой, значит её координаты удовлетворяют уравнению х=5, у=2 2=k·5+b (**) Решаем систему двух уравнений (*) и (**) Вычитаем из первого уравнения второе: -6=-4k ⇒ k=3/2=1,5 b=-4-k=-4-1,5=-5,5 ответ. у=1,5х-5,5
Второй Применяем формулу уравнения прямой, проходящей через две точки Применяем основное свойство пропорции: произведение крайних членов пропорции равно произведению средних -6(х-5)=-4(у-2) -6х+30=-4у+8 6х-4у-22=0 3х-2у-11=0 или у=1,5х-5,5
2. Проведем высоты трапеции ВН и СК. ВСКН - прямоугольник, значит НК = ВС = 4 ΔАВН = ΔDCK по гипотенузе и катету (АВ = CD так как трапеция равнобедренная, ВН = СК как высоты), ⇒ АН = DK = (AD - HK)/2 = (14 - 4)/2 = 5 АК = АН + НК = 5 + 4 = 9 ΔCKD: по теореме Пифагора СК = √(CD² - KD²) = √(169 - 25) = √144 = 12 ΔАСК: по теореме Пифагора АС = √(АК² + СК²) = √(81 + 144) = √225 = 15
3. Угол, соответствующий большей дуге АВ: 360° - 45° = 315° 315° / 45° = 7 - он в 7 раз больше угла, соответствующего меньшей дуге. Значит и длина большей дуги в 7 раз больше: 91 · 7 = 637
∠FAH = 180° - ∠FEH = ∠BED = 180° - ∠BCD = ∠PAQ;
б) ∠QCA = ∠HEA; это вписанные углы, опирающиеся на дугу AB;
поэтому прямоугольные треугольники QCA и AHE подобны.
∠AEF = ∠ACP; так как оба они в сумме с углом AED дают 180°.
поэтому подобны прямоугольные треугольники AFE и ACP.
Отсюда легко составить пропорции
c/AC = x/AE; (x = AH);
b/AC = a/AE;
если одно разделить на другое, получится
c/b = x/a;
x = ac/b;