Четырехугольник, соединяющий середины сторон - параллелограмм, его стороны параллельны диагоналям и равны их половине. И его площадь равна половине площади четырехугольника. Поскольку диагонали равны, этот четырехугольник - ромб. Поэтому отрезки, соединяющие середины противоположных сторон четырехугольника, одновременно - диагонали ромба (то есть они 1) делятся пополам, как в любом параллелограмме 2) взаимно перпендикулярны, это - только в ромбе). Площадь ромба равна половине произведения диагоналей, следовательно площадь всего четырехугольника равна произведению отрезков, соединяющих противоположные стороны.
Пусть АВСД - трапеция, у которой углы В и С - прямые (АВ - большее основание, СД - меньшее основание) . Проведем из тупого угла Д высоту на основание АВ (получим точку Е) , а из центра вписанной окружности - перпендикуляры (радиусы) на сторону АД и основание СД. Получим точку М (на основании СД) и точку N - на стороне АД. МД=NД = 4. Тогда АЕ = (АВ+R - СД-R) = 25-4=21. Из прямоугольного треугольника АДЕ по теореме Пифагора находим высоту трапеции: = (29^2-21^2)^(1/2)=20. Одновременно это и диаметр вписанной окружности. Тогда СД =СМ+МД= 10+4=14, АВ=10+25=35. Площадь трапеции: (14+35)*20/2=490.
Пусть АВСД - трапеция, у которой углы В и С - прямые (АВ - большее основание, СД - меньшее основание) . Проведем из тупого угла Д высоту на основание АВ (получим точку Е) , а из центра вписанной окружности - перпендикуляры (радиусы) на сторону АД и основание СД. Получим точку М (на основании СД) и точку N - на стороне АД. МД=NД = 4. Тогда АЕ = (АВ+R - СД-R) = 25-4=21. Из прямоугольного треугольника АДЕ по теореме Пифагора находим высоту трапеции: = (29^2-21^2)^(1/2)=20. Одновременно это и диаметр вписанной окружности. Тогда СД =СМ+МД= 10+4=14, АВ=10+25=35. Площадь трапеции: (14+35)*20/2=490.
Поскольку диагонали равны, этот четырехугольник - ромб. Поэтому отрезки, соединяющие середины противоположных сторон четырехугольника, одновременно - диагонали ромба (то есть они 1) делятся пополам, как в любом параллелограмме 2) взаимно перпендикулярны, это - только в ромбе).
Площадь ромба равна половине произведения диагоналей, следовательно площадь всего четырехугольника равна произведению отрезков, соединяющих противоположные стороны.