Поскольку в условиях указана только величина расстояния от центра окружности до прямой, но не указано под каким углом проведена воображаемая линия от центра до прямой, то возможны следующие варианты:
1. Прямая представляет собой касательную к окружности. В этом случае окружность и прямая будут иметь только одну общую точку, расположенную на расстоянии радиуса окружности от ее центра.
2. Прямая может пересекать окружность как угодно. В этом случае мы получим 2 точки пересечения, каждая из которых будет удалена от центра окружности на расстояние радиуса.
Пусть ребра куба равны а.
Тогда диагонали граней равны а√2
Плоскость ВАD₁ = прямоугольник ВАD₁С₁.
Плоскость ВА₁С₁ - правильный треугольник со сторонами а√2 (диагонали граней куба).
Искомый угол - угол между высотой А₁Н ( она ⊥ ВС₁) правильного треугольника ВА₁С₁ и средней линией ОН прямоугольника ВАD₁С₁ (она⊥ ВС₁).
OA₁=AO= (a√2)/2_
1) tg∠A₁HO=A₁O:OH=[a√2):2]:a=1/√2= 0,7071 - это тангенс угла 35º15’
или
2) sin ∠A₁HO=A₁O:A₁HA₁H=a√2*sin60º=1/√3=0,5773, это синус того же угла 35º15