Г)
LO=ON=LN:2=3:2=1,5
КО=ОМ=КМ:2=2:2=1
Рассмотрим треугольник КLO:
<KOL=90°,т.к диагонали рамба перпендикулярны,значит квадрат гипотенузы КL равен:
КL^2=LO^2+KO^2=1,5^2 +1^2=2,25+1=3,25
KL=корень из 3,25=примерно 1,8
2)АВС -равнобедренный треугольник,значит ВН- не только биссектриса(дано по условию-рисунку),но высота и медиана треугольника. Медиана делит сторону ,на которую проведена,пополам,значит :
АН=НС=АС:2=4:2=2
Треугольник ВСН:
<ВНС=90°(ВН-высота,медиана и биссектриса)
ВН^2=ВС^2-НС^2=5^2-2^2=25-4=21
ВН=~4,6(приблизительно)
Г)
LO=ON=LN:2=3:2=1,5
КО=ОМ=КМ:2=2:2=1
Рассмотрим треугольник КLO:
<KOL=90°,т.к диагонали рамба перпендикулярны,значит квадрат гипотенузы КL равен:
КL^2=LO^2+KO^2=1,5^2 +1^2=2,25+1=3,25
KL=корень из 3,25=примерно 1,8
2)АВС -равнобедренный треугольник,значит ВН- не только биссектриса(дано по условию-рисунку),но высота и медиана треугольника. Медиана делит сторону ,на которую проведена,пополам,значит :
АН=НС=АС:2=4:2=2
Треугольник ВСН:
<ВНС=90°(ВН-высота,медиана и биссектриса)
ВН^2=ВС^2-НС^2=5^2-2^2=25-4=21
ВН=~4,6(приблизительно)
1) Поскольку этот четырехугольник вписанный, сумма его противоположных углов равна 180°
Угол D, противолежащий углу В=80, равен 100; угол С, противолежащий углу А=60, равен 120°
------------------
2)Вокруг трапеции можно описать окружность тогда и только тогда, когда ее боковые стороны равны.
Если основание и боковые стороны трапеции равны, то один из треугольников, на которые диагонали делят трапецию, равнобедренный, основанием в нём является диагональ.
Треугольник ВСD равнобедренный, углы ВDС=СВD.
Угол ВСD=180-60=120°
Отсюда угол ВDС= СDВ= (180-60):2=30°.
Углы АВD и АСD равны 120-30=90°
Следовательно, треугольники АВD и ACD - прямоугольные.
Центр описанной вокруг прямоугольного треугольника окружности лежит на середине его гипотенузы.