На диагонали bd параллелограмма abcd отмечены точки p и q, причем bp=pq=qd. а) докажите, что прямые ap и aq проходят через середины m и n сторон bc и cd соответственно. б) найдите отношение площади пятиугольника cmpqn к площади параллелограмма abcd.
Признак равенства по гипотенузе и острому углу.Если гипотенуза и острый угол одного прямоугольного треугольника соответственно равны гипотенузе и острому углу другого прямоугольного треугольника, то такие треугольники равны. Признак равенства прямоугольных треугольников по двум катетам.Если два катета одного прямоугольного треугольника соответственно равны двум катетам другого прямоугольного треугольника, то такие треугольники равны. Признак равенства прямоугольных треугольников по катету и гипотенузе.Если катет и гипотенуза одного прямоугольного треугольника соответственно равны катету и гипотенузе другого прямоугольного треугольника, то такие треугольники равны. Признак равенства прямоугольных треугольников по катету и острому углу.Если катет и острый угол одного прямоугольного треугольника соответственно равны катету и острому углу другого прямоугольного треугольника, то такие треугольники равны.
Плоскость, проходящая через точки В и С пересекает плоскость треугольника АВС, по прямой ВС (через две точки можно провести только одну прямую). Поскольку прямая ВС принадлежит и плоскости треугольника и плоскости "а", а плоскость "а" параллельна отрезку DE, то прямая ВС параллельна прямой DE. Тогда треугольники АDE и АВС подобны. Коэффициент подобия этих треугольников равен 5:3 (так как АВ=АD+DB, а АD=3 части, DB=2 части, то АВ=5 частей). Из подобия треугольников имеем: BC/DE=5/3, а ВС=5*(5/3)=25/3 см. ответ: ВС=8и1/3 см.
то есть половина , так же и с другой стороной
тогда