Биссектриса угла а поямоугольника авсd пересекает сторону вс в точке к. найдите отношение ав: аd, если отношение площади треугольника авк к площади трапеции аксd равно 3/7.
Вариант решения. Пусть коэффициент отношения площадей равен 1. Тогда площадь тр-ка АВК=3, площадь трапеции АКСД=7 Биссектриса угла параллелограмма ( а прямоугольник - параллелограмм) отсекает от него равнобедренный треугольник. АВ=ВК=а S ABK=a²/2=3 a=√6 Опустим из К перпендикуляр КН на АД. АВКН- квадрат, АН=КН=а=√6. Пусть НД=х. Тогда АД=√6+х. S КСДН=S АКСД- АКН S AKH=S АВК=3 S КСДН=7-3=4 S КСДН=СД*ДН=√6*х=4 ⇒ х=4/√6 АД=√6+4/√6=10/√6 АВ:АД=√6:(10/√6)=6/10=3/5
Дано: АС=4 см, ВС=10 см; ВН=5,5 см Найти: АК-? Построение: Так как в условии сказано об удалении точек от ребра двугранного угла, то прямые АС и ВС перпендикулярны к прямой z, содержащей ребро двугранного угла. Удаление точки от другой грани, говорит о том, что ВН перпендикулярно плоскости α и в частности прямой АС, а АК перпендикулярно плоскости β и в частности прямой ВС. Можно спроецировать весь этот рисунок на плоскость, перпендикулярную плоскостям α и β. Решение: Имеется два треугольника ВСН и АСК с общим углом С. Рассмотрим синус (отношение противолежащего катета к гипотенузе) угла С для двух этих треугольников: Левые части этих соотношенйи равны, так как речь идет об одном и том же углы, значит равны и их правые части: Три отрезка из четырех даны по условию, длину четвертого нужно найти: Уточнение: в условии не сказано какая именно из двух точек (удаленная от ребра на 4 см или на 10 см) удалена от второй грани на 5,5 см, но если предположить, что АС=10 см, ВС=4 см, то , чего не может быть. ответ: 2,2 см
1)четырехугольник - это квадрат. Его сторона равна диаметру вписанной окружности, т. е 2R, где R- радиус вписанной окружности. Тогда площадь квадрата равна
Sкв = 4R^2
2) Разобьем шестиугольник на 6 треугольников отрезками, выходящими из центра к вершинам шестиугольника. Все эти треугольники правильные и равны между собой, т.к. угол при вершине 60 градусов и они равнобедренные, а высотой треугольника является радиус вписанной окружности, т. е. R. Сторону треугольников обозначим через X. Рассмотрим один из треугольников. Высота является в нем и медианой. Тогда, рассмотрев треугольник, образованный отрезком, проведенным из центра, половиной основания и высотой, имеем по теореме Пифагора
R^2 +(X/2)^2 = X^2, откуда X^2= 4R^2/3, X =2R/корень из 3 Площадь треугольника Sтр=X*R/2= 2R*R/2*корень из 3 =R^2/корень из 3 Площадь шестиугольника Sш =6Sтр= 6R^2/корень из 3 = 2* корень из 3* R^2
Отношение площадей Sкв/Sш = 4R2/2* корень из 3* R^2 = 2/корень из 3
ΔABK -равнобедренный прямоугольный
пусть АВ=х,
SΔABK=(x*x)/2, SΔABK=x²/2
трапеция AKCD:
КС=ВС-ВК
КС=у, BC=x+y, ⇒AD=x+y
AB=CD=h=x
SAKCD=(y+(x+y))*x/2, SAKCD=(x+2y)*x/2
SΔABK:SAKCD=3:7
x²/2 :(x+2y)*x/2=3:7, x/(x+2y)=3/7
4x=6y, x=1,5y
AB=1,5y, AD=1,5y+y, AD=2,5y
AB:AD=1,5y:2,5y
AB:AD=3:5 или AB:AD=0,6