Вравнобедренном треугольнике авц к основанию ац проведена медиана во . найдите углы треугольника аво если известно что угол ц равен 20 градусов а угол абц 140 градусов.
В соответствии с классическим определением, угол между векторами,отложенными от одной точки, определяется как кратчайший угол, на который нужно повернуть один из векторов вокруг своего начала до положения сонаправленности с другим вектором. Для заданного варианта углы между векторами могут быть определены из соотношения углов в треугольнике ABC, в котором ∠АСВ=90°, ∠СВА=40°, соответственно ∠САВ=180°-(90°+40°)=50°. Тогда - - угол между векторами СА и СВ равен ∠АСВ=90°; - угол между векторами ВА и СА равен ∠САВ=50°; - угол между векторами СВ и ВА равен ∠САВ+∠АСВ=50°+90°=140°
Пусть abc - произвольный треугольник. проведем через вершину b прямую, параллельную прямой ac. отметим на ней точку d так, чтобы точки a и d лежали по разные стороны от прямой bc.углы dbc и acb равны как внутренние накрест лежащие, образованные секущей bc с параллельными прямыми ac и bd. поэтому сумма углов треугольника при вершинах b и с равна углу abd.сумма всех трех углов треугольника равна сумме углов abd и bac. так как эти углы внутренние односторонние для параллельных ac и bd при секущей ab, то их сумма равна 180°. что и требовалось доказать.