Чертим тр-к АВС с высотой ВН. Высота ВН=20. Боковые стороны равны ( АВ=ВС=25). Рассмотрим тр-к ВНС. По т.Пифагора (квадрат гипотенузы равен сумме квадратов катетов) можно найти НС. НС= Корень квадратный ( а под корнем пишем->) ВС(2 (в квадрате)) - ВН(2). Подставляем числа. НС= Корень квадратный 625-400 = корень квадратный 225. Следовательно, НС=15. Отсюда, основание АС=2*15=30. Формула площади тр-ка : S= 1/2*a*h, где а-основание, h-высота. Опять подставляем числа. S=1/2*30*20=300. ответ: 300.
Чертим тр-к АВС с высотой ВН. Высота ВН=20. Боковые стороны равны ( АВ=ВС=25). Рассмотрим тр-к ВНС. По т.Пифагора (квадрат гипотенузы равен сумме квадратов катетов) можно найти НС. НС= Корень квадратный ( а под корнем пишем->) ВС(2 (в квадрате)) - ВН(2). Подставляем числа. НС= Корень квадратный 625-400 = корень квадратный 225. Следовательно, НС=15. Отсюда, основание АС=2*15=30. Формула площади тр-ка : S= 1/2*a*h, где а-основание, h-высота. Опять подставляем числа. S=1/2*30*20=300. ответ: 300.
квадрат ABCD = квадрат ABC₁D₁
AB = a
AC = AC₁ = d
угол DAD₁ = угол CAC₁ = 60°
Найти: OO₁
Решение:
По формуле диагонали квадрата
⇒ AO = AO₁ =
⇒ ΔO₁AO - равнобедренный
Так как угол O₁AO = 60°, а по сумме углов 180 - 60 = 120°, то другие два угла OO₁A = O₁OA = 120/2 = 60°. Следовательно ΔO₁AO - равносторонний O₁A = AO = OO₁ =
ответ: расстояние между центрами равно