из вершины В на АD опустим перпендикуляр, назовем его ВК. тогда, т.к. в треугольнике АВD стороны АВ и ВD равны получим, что ВК-медиана, биссектриса и высота в треугольнике АВD. значит ВК разделила АD пополам, то есть АК=КD=12/2=6.
по основному тригонометрическому тождеству находим cos А=корень из 1-sin квадрат А, то есть корень из 1-0,64=0,6.
из треугольника АВК соs А= АК/АВ, значит АВ=АК/cos A
АВ=6/0,6=10
по теореме Пифагора из треугольника АВК
ВК=корень из АВ квадрат минус АК квадрат
ВК=корень из 100-36= 8,
тогда площать параллелограмма АВСD=АD*ВК=12*8=96
СQ/AP=QB/PB=ВС/АВ
Откуда QB/ВС=РВ/АВ
Значит ΔАВС и ΔРВQ подобны по 2 пропорциональным сторонам (QB/ВС=РВ/АВ) и углу между ними (угол В-общий). Т.к. у подобных треугольников углы равны, то <BPQ=<BAC, ч.т.д.
б) Sавс=96, Sаqрс=72, значит Sрвq=Sавс-Sаqрс=96-72=24
Отношение площадей 2 подобных треугольников равно квадрату коэффициента подобия: Sрвq/Sавс=24/96=1/4
Значит QB/ВС=РВ/АВ=PQ/AC=1/2
Из прямоугольного Δ СQB QB/ВС=сos B, cos B=1/2, значит <B=60°
Радиус R окружности, описанной около треугольника ABC равен:
R=AC/2sin B
AC=2R*sin 60= 2*16/√3*√3/2=16
PQ=AC/2=16/2=8