АВ = 5см, ВС = 50мм. Угол, вертикальный с углом при вершине треугольника, равен 86 градусов. Найдите угол, который образует медиана треугольника, проведенная к основанию, со стороной АВ
Периметр - сумма всех сторон. учитывая, что трапеция равнобедренная, ее боковые стороны равны. тогда: 60-14-26 = 20 20/2 = 10 (- это каждая боковая сторона) площадь будем искать по формуле полусуммы оснований, умноженных на высоту. проведем высоту. сразу лучше две высоты, см. рисунок. две высоты делят основание равнобедренной трапеции на прямоугольник, отсекая от бОльшего основания равные части. 26-14 =12. 12/2 = 6 дальше по т. Пифагора: см. рисунок высота = 8, дальше подставим в формулу: (14+26)/2 * 8 = 160
Даны координаты вершин пирамиды
А(-5;-1;8) ; В(2;3;1) ; С (4;1;-2;) Д(6;3;7)
Найти:
1) угол между ветрами АВ и АС
2) проекцию вектора АD на вектор АС
3) площадь грани АВС
4) объем и высоту пирамиды
5) составить уравнение АВС
1) Решение: находим векторы AB и AC.
AB = (2-(-5); 3-(-1); 1-8) = (7; 4; -7).
AC = (4-(-5); 1-(-1); -2-8) = (9; 2; -10).
Найдем скалярное произведение векторов:
a · b = ax · bx + ay · by + az · bz = 7 · 9 + 4 · 2 + (-7) · (-10) = 63 + 8 + 70 = 141.
Найдем длины векторов:
|AB| = √(ax² + ay² + az²) = √(7² + 4² + (-7)²) = √(49 + 16 + 49) = √114
|AC| = √(bx² + by² + bz²) = √(9² + 2² + (-10)²) = √(81 + 4 + 100) = √185
Найдем угол между векторами:
cos α = a · b
|a||b|
cos α = 141 = 47√21090/7030 ≈ 0.97091.
√114 · √185
α = 13.85278°
2) Решение: находим вектор AD.
AD = (6-(-5); 3-(-1); 7-8) = (11; 4; -1).
Пр ba = a · b
|b|
Найдем скалярное произведение векторов:
a · b = ax · bx + ay · by + az · bz = 11 · 9 + 4 · 2 + (-1) · (-10) = 99 + 8 + 10 = 117
Найдем модуль вектора:(9² + 2² + (-10)² = √81 + 4 + 100 = √185
Пр ba = 117 = 117√185/185 ≈ 8,60201.
√185
3) Площадь треугольника равна половине модуля векторного произведения векторов АВ и АС.
Находим произведение АВхАС с применением схемы Саррюса.
I j k| I j
7 4 -7| 7 4
9 2 -10| 9 2 = -40i – 63j + 14k + 70j + 14i – 36k =
= -26i + 7j -22k. Вектор равен ( -26; 7; -22)
Найдем модуль вектора:
|c| = √cx² + cy² + cz² = √(-26)² + 7² + (-22)² = √676 + 49 + 484 = √1209
Найдем площадь треугольника:
S = (1/2) √1209 = √1209/2 ≈ 17,38534.
4) Объём пирамиды равен 1/6 смешанного произведения векторов АВ, AC и AD.
Произведение АВхAC и вектор AD найдены выше и равны:
ABxAD = (-26; 7; -22),
AD = (11; 4; -1).
-286 + 28 + 22 = -236.
V = (1/6)*|-236| = 236/6 = (118/3) ≈ 39,333 куб. ед.
5) Так как нормальный вектор плоскости АВС уже найден и равен (-26; 7; -22), осталось подставить в уравнение плоскости координаты точки А(-5;-1;8).
(-26)*(x – (-5)) + 7*(y – (-1) + (-22)*(z – 8) = 0,
-26x + 7y – 22z + 53 = 0 или с положительным коэффициентом при переменной х:
26x - 7y + 22z - 53 = 0.