1 на рисунке 2 ответ:
DA=26,1 см, DC= 26,1 см
Пошаговое объяснение:
Воспользуемся теоремой о серединном перпендикуляре к отрезку:
"Любая точка, лежащая на серединном перпендикуляре к отрезку равноудалена от концов этого отрезка". Точка D лежит на серединном перпендикуляре к отрезку АВ и к отрезку ВС.
Следовательно, верны равенства: DB=DA=DC
Т.к. по условию, DB=26,1 см, то DA=DC=26,1 см
3 ответ:
9
Объяснение:
Три высоты пересекаются в одной точке. Т.к. две высоты пересекаются в одной точке, через эту точку проходит и третья высота, таким образом BN - высота р/б тр-ка потому что проходит через точку пересечения высот, т.к. AC - основание BN - не только высота но и медиана, значит n - середина AC, NC = 1/2 AC = 9
4Точка D равноудалена от всех сторон треугольника, то она является точкой пересечения биссектрис данного треугольника.
Против меньшего угла всегда расположена короткая сторона.
Найдем угол, под которым видна короткая сторона, используя данные углы
Сумма углов треугольника равна 180 градусам
Получаем, 180 - (106/2 + 52/2) = 101 градус
5 Решение:
Серединный перпендикуляр пересекает сторону ВС в т.К.
Рассмотрим треугольники :ВКД и ДКС-они прямоугольные.
1) ДК- общая,
2)ВК=КС- по условию,
3)УголВКД=углуДКС, отсюда следует,что треугольники: ВКД=ДКС-по признаку равенства треугольников( по двум сторонам и углу между ними).
Значит ВД=ДС=30(см.),
АД= АС-ДС=40-30=10(см.)
ответ: 10см.;30см.
там цифры немного не правильные
Пусть CE II BD; E лежит на продолжении AD;
Площадь треугольника ACE равна площади трапеции,
так как DE = BC; => AE = AD + BC; и у них общая высота, которая равна расстоянию от точки C до прямой AD.
Еще раз - у треугольника и трапеции одинаковые средние линии AE/2 = (AD + BC)/2 и общая высота. Площадь равна произведению средней линии на высоту и у треугольника и у трапеции.
Далее, если M - середина BC, N - середина AD, K - середина AE;
то MC = NK; потому что NK = AE/2 - AD/2 = BC/2;
=> MCKN - параллелограмм, и MN = CK;
=> в треугольнике ACE (площадь которого надо найти по условию задачи) медиана CK = 2; а стороны AC = 3; CE = 5;
Если теперь продлить CK за точку K на "свою" длину 2 - пусть это точка P;
то ACEP - тоже параллелограмм, потому что его диагонали AE и CP делятся пополам в точке пересечения K.
Площадь треугольника ACE (и следовательно, площадь трапеции ABCD) равна половине площади этого параллелограмма.
Также и треугольник ACP имеет такую же площадь (любая из диагоналей делит параллелограмм на два равных треугольника).
У треугольника ACP стороны AC = 3; CP = 4; AP = 5; то есть это прямоугольный треугольник, и его площадь равна 3*4/2 = 6;