В равнобедренном треугольнике медиана, проведённая к основанию, является биссектрисой и высотой . Дано: DABC - равнобедренный; AB - основание. CD - медиана .
Док-ть: CD - высота и биссектриса .
Доказательство:
CA=CD - по условию РA= РB - по свойству равнобедренного треугольника AD=DB т. к. CD - медиана , ЮDCAD=DCBD (по 1-ому признаку равенства треугольников) ЮРACD= РBCD, РADC= РBDC РACD=РBCD Ю CD - биссектриса РACD и РBCD - смежные и равны Ю РACD и РBCD - прямые Ю CD - высота треугольника. ещё доказательство: http://oldskola1.narod.ru/Nikitin/0018.htm
1) По условию угол АОС относится к углу СОВ как 1:7. Тогда пусть угол АОС = 1Х, тогда угол СОВ = 7Х.
угол АОС+уголСОВ = углу АОВ
угол АОС+уголСОВ = 144
1Х+7Х=144
8Х=144
Х=144/8
Х=18.
угол АОС=18, тогда уголСОВ = 7*18=126.
2) Пусть биссектрисой угла СОВ будет луч ОН, тогда угол СОН= углу НОВ. Угол СОН+угол НОВ= углу СОВ = 126, значит угол СОН= углу НОВ= 126/2=63.
3) Угол, образованный лучом ОА и биссектрисой угла СОВ - это угол АОН. Угол АОН = угол АОС+уголСОН= 18+ 63 = 81.
ответ: угол СОВ= 126, угол АОН = 81.