В треугольнике против большей стороны лежит больший угол.
Доказательство:
Пусть в ΔАВС АВ > ВС. Докажем, что ∠С > ∠А.
Отложим на стороне АВ отрезок ВК = ВС. Так как АВ > ВС, то точка К будет лежать между точками А и В, тогда угол 1 будет частью угла С:
∠1 < ∠С.
∠2 - внешний для ΔАСК, а внешний угол треугольника равен сумме двух внутренних, не смежных с ним. Тогда ∠2 = ∠А + ∠АСК, т.е.
∠2 > ∠А.
И еще ∠1 = ∠2 как углы при основании равнобедренного треугольника ВСК. Получаем:
∠А < ∠2 < ∠C, значит
∠А < ∠С
Обратная теорема: В треугольнике против большего угла лежит большая сторона.
Доказательство:
Пусть в треугольнике АВС ∠С > ∠A. Докажем, что АВ > ВС.
Предположим, что АВ < ВС. Тогда по доказанной теореме ∠С должен быть меньше ∠А. Это противоречит условию. Значит предположение неверно, АВ > ВС.
Задание 1 - ответ: А) 120 см².
Задание 2 - ответ: Г) d sin α
Задание 3 - ответ: В) 432
Объяснение:
Задание 1.
Площадь боковой поверхности четырехугольной призмы равна произведению периметра основания на длину бокового ребра.
Так как четырёхугольная призма является правильной, то в её основании лежит квадрат, периметр которого равен:
P = 4 * 6 = 24 см.
Отсюда площадь боковой поверхности призмы:
Sб = 24 * 5 = 120 см²
ответ: А) 120 см².
Задание 2.
В прямоугольном треугольнике, образованном диагональю, боковым ребром и проекцией диагонали на плоскость основания, боковое ребро является катетом, лежащим против угла α, а диагональ d является гипотенузой.
Катет равен произведению гипотенузы на синус угла, противолежащего этому катету, то есть:
Боковое ребро = d sin α
ответ: Г) d sin α
Задание 3.
В основании правильной четырёхугольной пирамиды лежит квадрат, а проекцией вершины пирамиды является центр квадрата основания, в силу чего все 4 боковые грани по площади равны между собой.
Каждая из четырёх боковых граней представляет из себя равнобедренный треугольник со стороной основания 18 см и двумя боковыми сторонами по 15 см.
Находим по теореме Пифагора высоту этого треугольника:
h = √ [(15² - (18/2)²] = √ (225 - 81) = √144 = 12 см
Площадь одного треугольника - это одна-вторая произведения основания на высоту:
(18 * 12): 2 = 216 : 2 = 108 см².
Площадь 4-х таких треугольников:
108 * 4 = 432 см².
ответ: В) 432
Δ - прямоугольный
b = BC = 10 см.
S = 46 см ²
Найти: a = AC
Решение
По формуле нахождения площади прямоугольного треугольника имеем:
ответ: катет AC = 9,2 см.