Думаю так: 3) Обозначим углы параллелограмма A, B, C,D. Проведём высоту ВН. Рассмотрим треугольник АВН. Он прямоугольный. У него угол ВАН=30 градусов. По св-ву катета, противолежащего углу 30 градусов ВН=1/2АВ, ВН=4см. S=4*10=40см2 ответ: 40 см2. 4) 1-ый вариант записи: теорема Пифагора сумма квадратов катетов равна квадрату гипотенузы значит квадрат катета равен квадрат гипотенузы минус квадрат известного катета 13^2-12^2=169-144=25 катет равен√25=5см площадь треугольника прямоугольного равна половине произведения его катетов S=12x5:2=30cм^2
очевидно, что OA=OB=2*a (там 2 прямоуголных треугольника получается, если из O опустить перпендикуляр на плоскость, угол при вершине 30 гр по условию =>OA= 2*а) . пусть точка пересечения перпендикуляра из О с плоскостью - K. тогда АК=корень (3)*а (как и BK). АBK - равнобедренный . по условию проекции наклонных на плоскость образуют угол 120 градусов. запуливаем теорему косинусов для ABK и получаем, что AB^2=BK^2+AK^2-2*BK*AK*cos120гр. это ответ (вообще сами досчитайте, там все известно) . можно без косинусов. опустим из К высоту на AB. т. к ABK - равнобедренный, то высота является и биссектриссой, т. е она поделили угол в 120 гр пополам. пусть T - основание высоты. тогада имеем KTA 0 прямоуголный с углом в 30 гр (90-60). KA -гипотенуза. зная ее длину найдем AT = 3/2*a. AB=2*AT=3*a
Если sinA=3/4, то ВН₁=3х, АВ=4х
АВ=4х=6
4х=6
х=6/4=1,5 ⇒ВН₁=3х=3*1,5=4,5
АН₁²=АВ²-ВН₁²=6²-4,5²=36-20,25=15,75
АН₁=√15,75=3√7/2
АН₁=DH₂=3√7/2
BC=H₁H₂=4
АD=АН₁+H₁H₂+DH₂=3√7/2+4+3√7/2=4+3√7
Sabcd=(BC+AD) *BH₁/2=(4+4+3√7)*4.5/2=(8+3√7)*4.5/2=18+6,75√7
ОТВ: 18+6,75√7