Объяснение:
Из условия нам известно, что ∠DOC равен пяти углам COB.
Если посмотреть на чертеж, то мы увидим, что ∠DOC и ∠COB смежные, а следовательно, их сумма равна 180°. Для нахождения углов DOC и COB составим линейное уравнение:
Пусть x - ∠DOC, тогда ∠COB - 5x. (угол COB равен 5x, т.к. он в 5 раз больше угла DOC)
Получаем:
x + 5x = 180°
6x = 180°
x = 30° (Это мы нашли x, то есть ∠DOC)
∠COB = 30° * 5 = 150°.
Ну а дальше - дело техники.
∠COD = ∠BOA = 150°(все вертикальные углы равны)
∠BOC = ∠AOD = 30°(все вертикальные углы равны).
Задача решена.
Пусть катеты равны а и b, гипотенуза равна с и высота, проведённая из вершины прямого угла, равна h.
Высота прямоугольного треугольника, проведённая из вершина прямого угла к гипотенузе, равна произведению катетов, делённому на гипотенузу прямоугольного треугольника.Гипотенузу треугольника найдём по теореме Пифагора (сумма квадратов катетов равна квадрату гипотенузы) :
c² = a² + b² = 5² + 12² = 25 + 144 = 169
c = √c² = √169 = 13 см.
Тогда, по выше сказанному, h равно :
h = ab / c = 5 см*12 см / 13 см = 60 см²/13 см = 4 8/13 см.
4 8/13 см.
<BCK =<MCK =α -?
Точка K находится вне треугольника (на продолжении биссектрисы AL и MK _среднего перпендикуляра стороны BC).
Из ΔСMK : tqα = MK/MC =MK/(AB/2) =2MK/AB.
Из ΔABL: BL =AB*tq<LAB =AB*tq20° ;
ML =BM - BL = BC/2 - <BL = (AB*tq40°)/2 - AB*tq20°= (AB/2)*tq40°-AB*tq20° =
=(AB/2)*2tq20°/(1-tq²20°) - AB*tq20° =
=(AB/2)*tq20°(2/(1-tq²20°) -2) =(AB/2)*2tq³20°/(1 -tq²20°)=(AB/2)*tq²20°*tq40°.
MK | | BA ; <LKM = <LAB =20° ;
Из ΔKML: MK =ML*ctq<LKM⇔MK=AB/2)*tq²20°*tq40°*ctq20° =(AB/2)*tq20*tq40°;
окончательноьно :
tqα = 2MK/AB = 2*(AB/2)*tq20*tq40°/ AB =tq20°*tq40°.
ответ : α = arctq (tq20°*tq40°) .
(пример некрасивого решения)