биссектрисы внутренних односторонних углов взаимно перпендикулярны, поэтому этот четырехугольник - заведомо прямоугольник. Чтобы он был квадратом, достаточно доказать равенство смежных сторон.
Квадрат отличается от прямоугольника тем, что симметричен относительно диагоналей.
У полученного прямоугольника противоположные вершины лежат на прямых, проходящих через середины противоположных сторон исходного прямоугольника.
Поскольку исходный прямоугольник переходит в себя при отражении относительно этих прямых, то и полученный при пересечении биссектрис прямоугольник тоже симметричен относительно этих прямых (то есть переходит в себя при отражении), то есть - относительно своих диагоналей.
значит, это квадрат.
Объяснение:
- источник
биссектрисы внутренних односторонних углов взаимно перпендикулярны, поэтому этот четырехугольник - заведомо прямоугольник. Чтобы он был квадратом, достаточно доказать равенство смежных сторон.
Квадрат отличается от прямоугольника тем, что симметричен относительно диагоналей.
У полученного прямоугольника противоположные вершины лежат на прямых, проходящих через середины противоположных сторон исходного прямоугольника.
Поскольку исходный прямоугольник переходит в себя при отражении относительно этих прямых, то и полученный при пересечении биссектрис прямоугольник тоже симметричен относительно этих прямых (то есть переходит в себя при отражении), то есть - относительно своих диагоналей.
значит, это квадрат.
Объяснение:
- источник
с² = 4²+ 3² = 25
с=5
sinα = в/с =3/5 = 0,6
α = arcsin0,6
sinβ = a/c= 4/5=0,8
β= arcsin0,8