Дана правильная четырехугольная пирамида SАВСД, длина бокового ребра которой равна L = 3 см, а стороны основания a = 2√3 см.
Проведём осевое сечение через 2 боковых ребра.
В сечении равнобедренный треугольник АSС с боковыми сторонами L = 3 см и основанием - диагональ квадрата основания d = a√2 = (2√3)*√3 = 2√6 см.
Высота Н пирамиды равна:
Н = √(L² - (d/2)²) = √(9 - 6) = √3 см.
Перпендикуляр из центра основания пирамиды на боковое ребро (пусть это ОК) - это высота треугольника ОSС, она равна (√3*√6)/3 = √2 см.
Искомый угол лежит в перпендикулярном сечении к боковому ребру.
В сечении - треугольник ВКД.
Апофема А = √(3² - (2√3/2)²) = √(9 - 6) = √3 см.
КД - высота, она равна 2S/L = (2*((1/2)*2√3*√6))/3 = 2√2 см.
То есть она как гипотенуза треугольника ОКД в 2 раза больше катета ОК, а угол КДО равен 30 градусов.
Отсюда искомый угол ВКД равен 2*60 = 120 градусов.
Пусть ABCD - трапеция, AB=CD- боковые стороны. Точка пересечения биссектрис О.
Из рисунка видно:
т.к. биссектрисы BO и CD - пересеклись в одной точки, следовательно они равны.
И равны они сторонам AB и CD. Биссектриса - это луч, разделяющий угол пополам, следовательно углы ABO=CBO=BCO=OCD. Следовательно треугольники ABO, BOC и OCD равны (по двум сторонам и углу между ними.
На рисунке это видно, что трапеция состоит из трёх одинаковых треугольников.
Если мы обозначим малое основание х, то большое основание будет 2х, а боковая сторона 3х, т.к. длинее малого онснования в 3 раза, высота для треугольника и для трапеции одинакова, поэтому обозначим её h, остюда отношения площадей:
S(ABCD)/S(BOC)=(0.5(AD+BC)*h)/(0,5*BC*h)=(0.5h*(2x+x))/(0.5h*x)=(1.5x*h)/(0.5x*h)=3. Что и видно из картинки - трапеция состоит из 3 равных треугольников, поэтому и отношения площади трапеции к площади треугольника равно 3. Т.е. трапеция в три раза больше треугольника BOC.
ответ: Отношение площади трапеции к площади треугольника равно 3.