ответ:
формула площі трикутника за стороною та висотою
площа трикутника дорівнює половині добутку довжини сторони трикутника та довжини проведеної до цієї сторони висоти
s = 1 a · h
2
формула площі трикутника за трьома сторонами
формула герона
s = √p(p - a)(p - b)(p - c)
формула площі трикутника за двома сторонами і кутом між ними
площа трикутника дорівнює половині добутку двох його сторін помноженого на синус кута між ними.
s = 1 a · b · sin γ
2
формула площі трикутника за трьома сторонам і радіусом описаного кола
s = a · b · с
4r
формула площі трикутника за трьома сторонами і радіусом вписаного кола
площа трикутника дорівнює добутку півпериметра трикутника на радіус вписаного кола.
s = p · r
де s - площа трикутника,
a, b, c - довжини сторін трикутника,
h - висота трикутника,
γ - кут між сторонами a и b,
r - радіус вписаного кола,
r - радіус описаного кола,
p = a + b + c - півпериметр трикутника.
2
объяснение:
Расчёт в координатной прямоугольной системе.
Основание тетраэдра KPNM - (это PNM) в плоскости хОу, вершина N в начале координат, ребро NM по оси Оу.
Определяем координаты заданных точек.
N(0; 0; 0), M(0; 4; 0), P(2√3; 2; 0).
Высоту точки К находим по формуле H = a√(2/3) = 4*√(2/3) ≈ 3,26599.
Точка К((2√3/3); 2; 4√(2/3)).
Координаты точки Н (это основание высоты пирамиды) находим как точку пересечения медиан основания пирамиды по формуле среднего арифметического координат вершин основания.
H((2√3/3); 2; 0).
Точка L как середина ребра KM:
L =(К((2√3/3); 2; 4√(2/3)) + M(0; 4; 0))/2 = ((√3/3); 3; 2√(2/3))
Определяем векторы.
КН = (0; 0; -4√(2/3)), модуль равен 4√(2/3)
NL = L(((√3/3); 3; 2√(2/3)) - N(0; 0; 0) = ((√3/3); 3; 2√(2/3)), модуль равен √((3/9) + 9 + (8/3)) = √(108/9) = 2√3.
Теперь находим косинус угла между заданными прямыми.
cos(KH_NL) = |(0 + 0 + (-16/3))|/(4√(2/3)*2√3) = √2/3.
Угол равен arccos(√2/3) = 1,0799 радиан или 61,8745 градуса.