Ага, Пифагорова тройка (20, 21, 29). Проверьте сами - сумма квадратов первых 2 равна квадрату третьего.
Итак, в основании пирамиды прямоугольный треугольник с площадью
Sosn =20*21/2 = 210,
и грани пирамиды имеют одинаковый наклон.
Смотрите, чтобы много не считать. Вершина пирамиды проектируется в центр ВПИСАННОЙ окружности. Потому что при равном наклоне граней все апофемы равны (они равны h = H/sin(Ф), Н - высота пирамиды, Ф - двугранный угол между гранью и основанием). Вершина пирамиды равноудалена от сторон основания, значит, И ЕЁ проекция на основание будет равноудалена от сторон основания. То есть - это центр вписанной окружности.
Проекцией апофемы является радиус вписанной окружности r.
Причем апофема (любая) h = r/cos(Ф); Боковая поверхность при одинаковых апофемах вычисляется так
Sb = (1/2)*Р*h;
где Р - периметр основания (это просто сумма площадей всех треугольников-боковых граней),
Sb = (1/2)*P*r/cos(Ф) = Sosn/cos(Ф); Эта формула крайне полезная, но я не уверен, что программе она есть, поэтому просто её вывел по ходу решения.
Итак,
H = r*tg(Ф), в нашем случае H = r; r = (a + b - c)/2 = 6; (могу объяснить, как эта формула получается, если надо, это в прямоугольном треугольнике работает. Но можно и так сосчитать, r = 2*S/P = 420/(20+21+29) = 6;)
H = 6; это высота пирамиды
Sosn = 210;
Sb = 210/(корень(2)/2) = 210*корень(2);
Полная поверхность 210*(1 + корень(2));
б) 3BM=2AM
BM=2AM/3
BM=2*6/3=4
в)АМ/ВМ = 1/5
АМ/ВМ = 0,2
ВМ = АМ/0,2
ВМ = 6/0,2 = 30
г)АМ/ВМ = 3/4
ВМ = АМ / (3/4)
ВМ = АМ * 4 / 3
ВМ = 6*4/3 = 8
д)АМ - ВМ = 2
ВМ = АМ - 2 = 4
е)2ВМ + 3АМ = 14
2ВМ = 14 - 3АМ
ВМ = (14 - 3АМ) /2
ВМ = (14 - 3*6)/2
ВМ = (14 - 18)/2
ВМ = -2