а) 20160
б) 2700
Объяснение:
a) Восемь точек - это восемь элементов из которых можно получить возможное число перестановок.
P = 8! = 1*2*3*4*5*6*7*8 = 40320
На самом деле их в два раза меньше, т. к. тут учтены ломаные одинаковые, но имеющие разное "направление" 1-2-3-4-5-6-7-8 и 8-7-6-5-4-3-2-1 например.
Т. е. 20160
б) Замкнутых будет в 8 раз меньше, т. к. повторяющиеся 1-2-3-4-5-6-7-8 = 2-3-4-5-6-7-8-1 = 3-4-5-6-7-8-1-2 и т д это одна и та же линия просто отсчет точек в разном порядке.
21600 / 8 = 2700
Обозначим ромб АВСД. Проведём диагонали АС и ВД. Точка их пересечения О. Рассмотрим треугольник АВО. Проведём в нём высоту ОК на АВ. Тогда по условию ВК=3, АК=12. В прямоугольном треугольнике высота проведённая на гипотенузу делит его на подобные треугольники. Отсюда ВК/ОК=ОК/АК. Или 3/ОК=ОК/12. ОТсюда ОК=6. По теореме Пифагора ВО=корень из(ВК квадрат+ОК квадрат) = корень из(9+36)=3 корня из 5. Отсюда диагональ ВД=2 ВО=6 корней из 5. Из подобия треугольников ВОК и АОК получим АО/АК=ВО/ОК. Или АО/12=(3 корня из 5)/6. Отсюда АО=6 корней из 5. Тогда диагональ АС=2АО=12 корней из 5.