М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
olgadulebenez
olgadulebenez
10.12.2022 10:47 •  Геометрия

Мавс-тетраэдр, ребра все равны 6 см. т. д € мв, т.е€мс, т. f€ав, аf=fb, т.р€ма .обьяснить, как построить т. пересечения прямой де с плоскостью адс

👇
Ответ:
Дан правильный тетраэдр МАВС. Все его ребра равны.
АВ=АС=ВС=МА=МВ=МС=√6/2.

Через точку А₁ на ребре АВ, АА₁=А₁В в плоскости треугольника АМВ  проведем прямую параллельную прямой АМ. Получим точку М₁, лежащую на ребре МВ, такую, что ММ₁=М₁В.  АМ || A₁M₁.  Через точку М₁ в грани МВС проведём прямую параллельную МС. Получим точку С₁ на ребре ВС, так что ВС₁=С₁С. МС || М₁С₁
Соединим точки А₁ и С₁, получим треугольник  А₁С₁М₁ - нужное нам сечение.
Причем А₁С₁ || AC, так как является средней линией треугольника АВС.
Каждая сторона треугольника А₁М₁С₁ является средней линией треугольника АМС и А₁М₁=А₁С₁=М₁С₁=√6/4

Чтобы найти расстояние между плоскостями АМС и А₁М₁С₁ опустим перпендикуляр из точки В на плоскость АМС. Так как дан тетраэр, то вершина В проектируется в центр окружности, описанной около правильного треугольника АМС
ОА=ОС=ОМ=R
Аналогично точка О₁ - центр окружности, описанной около правильного треугольника А₁М₁С₁
О₁А₁=О₁С₁=О₁М₁=R/2 в силу подобия треугольников  АМС и А₁М₁С₁ с коэффициентом подобия 2.

радиус окружности описанной около равностороннего треугольника можно найти по формуле

при a=√6/2 получаем R=√6/2 ·√3/3=√2/2
Тогда по теореме Пифагора ВО²=АВ²-АО²=(√6/2)²-(√2/2)²=6/4 - 2/4=4/4=1
Значит ВО₁=1/2 в силу подобия 
и ОО₁=ВО-ВО₁=1/2
ответ 1/2
4,4(35 оценок)
Открыть все ответы
Ответ:
drobdrod
drobdrod
10.12.2022
      Прямоугольный треугольник - это треугольник в котором один из углов прямой, т.е. равен 90°
       Две стороны, прилежащие к прямому углу называются катетами, а сторона, лежащая против прямого угла называется гипотенуза. Причем гипотенуза всегда больше любого из катетов. 
    Свойства прямоугольного треугольника:
1. Катет, лежажий против угла в 30° равен половине гипотенузы. 
2. Медиана, проведенная к гипотенузе, равна половине гипотенузы.
3. Сумма двух острых углов прямоугольного треугольника равна 90°

Признаки равенства прямоугольных треугольников:
1. По двум катетам (Если катеты одного прямоугольного треугольника соответственно равны катетам другого прямоугольного треугольника, то такие треугольники равны)
2. По катету и гипотенузе (Если катет и гипотенуза одного прямоугольного треугольника соответственно равны катету и гипотенузе другого прямоугольного треугольника, то такие треугольники равны)
3. По катету и острому углу (Если катет и прилежащий к нему острый угол одного прямоугольного треугольника соответственно равны катету и прилежащему к нему острому углу другого прямоугольного треугольника, то такие треугольники равны)
4. По гипотенузе и острому углу (Если гипотенуза и острый угол одного прямоугольного треугольника соответственно равны гипотенузе и острому углу другого прямоугольного треугольника, то такие треугольники равны)

Площадь прямоугольного треугольника равна половине произведения его катетов.

Теорема Пифагора:
В прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов.

Теорема, обратная теореме Пифагора:
Если квадрат одной стороны треугольника равен сумме квадратов двух других сторон, то треугольник прямоугольный.

P.S. говоря об элементах треугольника в 8 классе учителя математики часто задают заполнить таблицу, где присутствуют такие элементы прямоугольного треугольника как a-катет, b-катет, c-гипотенуза, h-высота ,a_c и b_c -проекции катетов на гипотенузу. Формулы их нахождения и рисунок прилагаю в виде картинки. 
Прямоугольные треугольники,их элементы.формулировка теоремы пифагора.
Прямоугольные треугольники,их элементы.формулировка теоремы пифагора.
Прямоугольные треугольники,их элементы.формулировка теоремы пифагора.
4,6(28 оценок)
Ответ:
missvarvara2004
missvarvara2004
10.12.2022
Если в задании не ошибка, что R и L середины AC и AD, то решение такое.

Обозначим основание ВС за х, тогда АД = 15*2 - х = 30 - х (по свойству средней линии MN трапеции).
Из вершины С проведём 2 отрезка:
- СЕ параллельно АВ,
- СН как высоту к АД.
Отрезок RL по условию задания  является средней линией треугольника АСД. Поэтому сторона СД = 2*7 = 14.
Из треугольника ЕСД по теореме синусов находим СЕ = АВ.
АВ = СЕ = (14*sin 15°)/sin 75° = (14* 0,258819)/ 0,965926 =  3,751289.
По построению ЕД = 30 - х - х = 30 - 2х.
Угол ЕСН равен 90°-75° = 15°.
Тогда ЕД = ЕН + НД = CE*sin 15° + СД*cos 15° = 
= 3,751289* 0,258819 + 14* 0,965926 =  14,49387.
Приравняем значения ЕД: 30 - 2х =  14,49387.
Отсюда находим длину верхнего основания ВС:
х = (30 -  14,49387)/2 =  7,753067.
Нижнее основание АД = 30 -  7,753067 =  22,24693.
4,5(4 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ