Найдите периметр выпуклого четырехугольника abcd, если известно, что он в 6 раз больше стороны ab и в 3 раза больше стороны bc, а стороны ad и cd равны 15 и 18см соответсвенно.
Периметр в 6 раз больше стороны AB и в 3 раза больше стороны BC, откуда делаем вывод, что сторона ВС в 2 раза больше стороны АВ. Обозначим сторону АВ через х. Тогда ВС = 2х, а периметр Р=х+2х+15+18=3х+33. С другой стороны, Р=6*АВ = 6х Составим уравнение: 3х+33 = 6х 6х-3х = 33 3х = 33 х = 11 Значит, АВ = 11 см Тогда ВС = 2х = 2*11=22 см Периметр Р = АВ+ВС+СD+AD = 11+22+18+15=66 см ответ: 66 см
Давайте без точки О. 1. Строим АК. То есть надо разделить угол А ПОПОЛАМ. Из точки А циркулем делаем засечки D и E (одним радиусом) . Затем ставим острие циркуля в точки D и E и описываем равными радиусами дуги, пересекающиеся в точке F. Прямая, соединяющая А и F делит угол А пополам. Продолжаем эту прямую до пересечения со стороной ВС и получаем точку К. 2) Строим ВМ. То есть надо разделить сторону АС пополам. Одним раствором циркуля (большим половины АС) делаем засечки с двух сторон от АС. Соединяем точки засечек. Пересечение этой прямой с АС и дает точку М - середину АС. 3)Строим СН. То есть надо опустить из точки С перпендикуляр на АВ. Из точек А и Б проводим окружности, проходящие через точку С. Соединяем точки пересечения этих окружностей. Точка пересечения этой прямой с о стороной АВ и есть точка Н.