Внешний угол при вершине треугольника равен сумме внутренних углов треугольника, не смежных с ним. рассмотрим треугольник авс. угол свн - внешний угол при вершине, противоположной основанию. вм- биссектриса этого угла. она делит угол на два равных угла 1 и 2. так как внешний угол при в равен сумме внутренних углов а и с, а треугольник авс равнобедренный и углы при его основании равны между собой, все выделенные углы также равны между собой. углы под номером 1 -равные соответственные при прямых ас и вм и секущей ав углы под номером 2 - равные накрестлежащие при прямых ас и вм и секущей вс если при пересечении двух прямых третьей внутренние накрестлежащие углы равны, то прямые параллельны
Высота равнобедренного треугольника, проведенная к основанию, делит равнобедренный треугольник на два прямоугольных треугольника. И является биссектрисой угла при вершине. Пусть угол при основании х, тогда угол между высотой и боковой стороной равнобедренного треугольника равен (х-15°). Угол при вершине в два раза больше 2(х-15°)
Сумма углов треугольника равна 180° х+ х+2·(х-15°)=180° 4х=210° х=52,5° х-15°=52,5-15=37,5° Угол при вершине равнобедренного треугольника в 2 раза больше, так как высота равнобедренного треугольника является также и биссектрисой. ответ. углы при основании 52,5°; 52,5° и угол при вершине 75°
2/5-15 3/7
1 - х решаем пропорцию х=108/7*5/2=270/2=135
1 целая 1/2= 3/2 3/2*135=405/2 или 202 целых 1/2