М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
1970даша
1970даша
11.10.2022 09:46 •  Геометрия

Доказать: если плоскость пересекает одну из двух параллельных прямых, то она пересекает и вторую.

👇
Ответ:
плюхплюх
плюхплюх
11.10.2022

Параллельность прямых.

Лемма. Если одна из двух параллельных прямых пересекает данную плоскость, то и другая прямая пересекает эту плоскость.

Дано: параллельные прямые a и b, прямая a пересекает плоскость α в точке C.

Доказать, что прямая b также пересекает плоскость α.

Доказательство. Пусть плоскостью β будет плоскость, в которой лежат параллельные прямые a и b. Тогда плоскости α и β пересекутся по прямой, на пример c так как они имеют общую точку C. Эта прямая c лежит в плоскости β и пересекает прямую a в точке C. А если прямая пересекает одну из параллельных пря мых, то она пересечёт и другие прямые, поэтому прямая c пересекает и прямую b в точке E. Так как прямая c принадлежит и плоскости α, и плоскости β . Получается, что плоскостьα и прямая b пересекаются в точке E, то есть они имеют общую точку E. Лемма дока зана.

4,6(71 оценок)
Открыть все ответы
Ответ:
LORDytGucci
LORDytGucci
11.10.2022

Пусть есть треугольник с катетами AB и BC.

Если радиус описанной окружности равен 6,5, то гипотенуза равна 2*6,5 = 13.

Отрезки катетов до точки касания вписанной окружности равны  2 и -2.

По свойству касательных гипотенуза равна сумме этих отрезков:

AB - 2 + BC - 2 = 13  или AB + BC=17.

За теоремой Пифагора 13² = AB² + BC².

Возведём в квадрат равенство AB + BC = 17:

AB² + 2AB*BC + BC² = 289.    Заменим AB² +BC² = 169.

2AB*BC = 289 - 169 = 120, AB*BC = 120/2 = 60.

Из выражения AB+ BC = 17 выразим BC = 17 - AB и подставим в  AB*BC = 60.

Получим: AB(17 -AB) = 60   или 17*AB -AB² = 60.

Получили квадратное уравнение AB² - 17AB + 60 = 0.

Квадратное уравнение, решаем относительно AB.

 Ищем дискриминант:

D=(-17)^2-4*1*60=289-4*60=289-240=49;

AB1=(√49-(-17))/(2*1)=(7-(-17))/2=(7+17)/2=24/2=12;

AB2=(-√49-(-17))/(2*1)=(-7-(-17))/2=(-7+17)/2=10/2=5.

ответ: катеты равны 5 и 12.

4,5(59 оценок)
Ответ:
ilonabunduk
ilonabunduk
11.10.2022
Дан прямоугольный треугольник с катетами "а" и "в".
Радиус "R" его описанной окружности равен 6,5, а радиус "r" вписанной окружности равен 2.

Если радиус описанной окружности равен 6,5, то гипотенуза равна 2*6,5 = 13.
Отрезки катетов до точки касания вписанной окружности равны а - 2 и в - 2.
По свойству касательных гипотенуза равна сумме этих отрезков:
а - 2 + в - 2 = 13  или а + в = 17.
По Пифагору 13² = а² + в².
Возведём в квадрат равенство а + в = 17:
а² + 2ав + в² = 289.    Заменим а² + в² = 169.
2ав = 289 - 169 = 120,
ав = 120/2 = 60.
Из выражения а + в = 17 выразим в = 17 - а и подставим в  ав = 60.
Подучим: а(17 - а) = 60   или 17а - а² = 60.
Получили квадратное уравнение а² - 17а + 60 = 0.
Квадратное уравнение, решаем относительно a: Ищем дискриминант:
D=(-17)^2-4*1*60=289-4*60=289-240=49;Дискриминант больше 0, уравнение имеет 2 корня:
a_1=(√49-(-17))/(2*1)=(7-(-17))/2=(7+17)/2=24/2=12;a_2=(-√49-(-17))/(2*1)=(-7-(-17))/2=(-7+17)/2=10/2=5.
Полученные результаты и есть размеры катетов.

ответ: катеты равны 5 и 12.
Кто может найдите катеты прямоугольного треугольника,если радиус его описанной окружности равен 6,5,
4,4(15 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ