Определение:Проекция точки на прямую - это или сама точка, если она лежит на прямой, или основание перпендикуляра, опущенного из этой точки на заданную прямую.
Так как А1 и В1 - проекции точек на прямую ребро двугранного угла, то АА1 и ВВ1 перпендикулярны ему.
Грани двугранного угла по условию взаимно перпендикулярны, следовательно, АА1 перпендикулярно плоскости, которой принадлежит т.В, и ВВ1 перпендикулярно плоскости, которой принадлежит т.А.
ВА1В1 прямоугольный.
ВА1=А1В1+ВВ1=36+49=85
Отрезок АА1 перпендикулярен плоскости, которой принадлежит т. В, он перпендикулярен любой прямой, проходящей через его основание А1 (свойство).
ВАА1 - прямоугольный
По т.Пифагора
АВ=АА1+ВА1=25+85=110
АВ=110
Задание №1
Объяснение:
Пирамида SABCD. Апофема SH - высота треугольника SAB. O - точка пересечения диагоналей основания, SO - высота пирамиды.
1) Рассмотрим прямоугольный треугольник OHS. По теореме пифагора:
OH² = SH² - SO²
OH² = 4a² - 3a²
OH = a
По теореме Фалеса: BC = 2OH = 2a
Сторона основания 2a
2) SHO - линейный угол двугранного угла SABO. Найдя его, найдем и SABO, следовательно угол между боковой гранью и основанием.
Из прямоугольного треугольника SHO:
sin<SHO = SO/SH
sin<SHO = a√3/2a = √3/2
<SHO = 60°
Угол между боковой гранью и основанием 60°
3) S = Sбок + Sосн
В основании квадрат, значит Sосн = AB² = (2a)² = 4a²
Sбок = Pосн*SH/2
Pосн = 4*2a = 8a
Sбок = 8a*2a/2 = 8a²
S = 8a² + 4a² = 12a²
Площадь 12а²
4) Из точки О (это и есть центр основания) проводим перпендикуляр к апофеме SH, обозначаем H1. SH1 - расстояние от центра основания до плоскости боковой грани.
Из прямоугольного треугольника OH1H:
sin<SHO = OH1/OH
но sin<SHO = √3/2
√3/2 = OH1/a
OH1 = a√3/2
ответы: a; 60°; 12а²; a√3/2