Впрямоугольной трапеции авсd высота ав равна сумме оснований аd и bc. биссектриса угла авс пересекает сторону сd в точке к. в каком отношении эта точка делит cd?
Пусть BC≥AD. На стороне AB возьмем точку N так, что AN=AD и BN=BC (это возможно т.к. AB=AD+BC) и обозначим точку пересечения BK и NC через M. 1) Треугольники NAD и NBC равнобедренные и и прямоугольные, поэтому ∠DNC=180°-45°-45°=90°. 2) BM - биссектриса, а значит медиана и высота треугольника NBC. Отсюда MK - средняя линия треугольника NDC, т.е. DK/CK=1.
Если продолжить биссектрису угла АВС до пересечения с нижним основанием трапеции, получим прямоугольный равнобедренный треугольник... если рассмотреть подобные по двум углам треугольники ВСК и KDT, найдем в них равные стороны, следовательно, эти треугольники не только подобны, но и равны... CK=KD ответ: в отношении 1:1
Длина окр: 2пr = 8п 2r=8п:п 2r =8 r=4-рдиус вписан. окр. S впис. окр = пr2 S=3,14*4*4= 50,24 - плозадь впис окр. Плозадь окр, опис. вокруг правильного треуг. в 4 раза больше S опис. окр. =50,24*4=200,96 S кольца = S опис. окр.- S впис. окр. S кольца= 200,96- 50,24= 150,72 В треуг ABCD проведем медеаны,AD,BK,CM. S треуг. ABCD 1/2 AC*BK, 1/2 AC=KC Медиана треуг. впис окр. делится в отношении 2:1 Поэтому высота BK=R+r=8+4=12 S=12*KC Найдем KC - сторону треуг. KOC, KC-касат.,OC=R=8-гипотинуза, другой катет ОK=r=4 KC2=OC2+OK2 KC-корень из 8*8-4*4= корень из 48= 6,92 Sтреуг. ABC=12*6,92=83,04 Прости,но без рисунка.
Длина окр: 2пr = 8п 2r=8п:п 2r =8 r=4-рдиус вписан. окр. S впис. окр = пr2 S=3,14*4*4= 50,24 - плозадь впис окр. Плозадь окр, опис. вокруг правильного треуг. в 4 раза больше S опис. окр. =50,24*4=200,96 S кольца = S опис. окр.- S впис. окр. S кольца= 200,96- 50,24= 150,72 В треуг ABCD проведем медеаны,AD,BK,CM. S треуг. ABCD 1/2 AC*BK, 1/2 AC=KC Медиана треуг. впис окр. делится в отношении 2:1 Поэтому высота BK=R+r=8+4=12 S=12*KC Найдем KC - сторону треуг. KOC, KC-касат.,OC=R=8-гипотинуза, другой катет ОK=r=4 KC2=OC2+OK2 KC-корень из 8*8-4*4= корень из 48= 6,92 Sтреуг. ABC=12*6,92=83,04 Прости,но без рисунка.
1) Треугольники NAD и NBC равнобедренные и и прямоугольные, поэтому ∠DNC=180°-45°-45°=90°.
2) BM - биссектриса, а значит медиана и высота треугольника NBC.
Отсюда MK - средняя линия треугольника NDC, т.е. DK/CK=1.