исходя из этих данных можно решить только в случае, если исходный треугольник мре - равнобедренный, с равными сторонами мр и ре.тогда все легко.ра - является в данном случае и биссекриссой и высотой.и у нас 2 прямоугольных треугольника мра и аре, в которых ма=ае=в/2 (т.к. высота в равнобедренном треугольнике делит основание пополам).собствено дальше все решение основано на свойствах прямог. треугольника, а именно.мр - это гипотенуза мра, и равнамр = ма * синус (бетта/2)=в/2 *синус (бетта/2)а ра - это катет того же прямоуг треугольника, и он равен ра=ма/тангенс (бетта/2)=в/2 / тангенс (бетта/2)
но если треугольник мре - произвольный, то боюсь решить не получится, хотя мне кажется он все-таки равнобедренный.удачи
нам нужно построить угол при ребре АС
SO перпендикуляр к плоскости основания АВС.
По условию угол ВАС=90, Следовательно, АВ⊥АС (то есть ОА⊥АС)
Вы уже ведь даже говорите, что SA- наклонная, ОА - ее проекция. Следовательно, по т. о трех перпендикулярах SA⊥AC
Значит, угол SAO - линейный угол двугранного угла при ребре АС
И я не пойму, что вам не нравится.
Вам сказано не найти числовое значение этого угла. А построить.
Можно было бы и иначе
АС перпендикулярно АВ, SO- перпендикуляр к плоскости основания, то есть он перпендикулярен любой прямой в этой плоскости, то есть перпендикулярен и АС
Значит,
АС⊥АВ, АС⊥SO, значит, АС⊥SAB
Ну, и следовательно угол SAB искомый