Пусть параллельные прямые А и В пересечены секущей MN.Докажем, что накрест лежащие углы, например 1 и 2,равны. Допустим что углы 1 и 2 равны. Отложим от луча МN угол PMN,равный углу 2,так чтобы угол PMN и угол 2 были накрест лежащими углами при пересечениии прямых MP и В секущей MN.По построению эти накрест лежащие углы равны, потому MPIIB.Мы получили, что через точку М проходят две прямые (прямые А и MP),паралелельные прямой В. Но это противоречит аксиоме параллельных прямых. Значит наше допущение невнрно и угол 1 = 2.
Пусть О - точка пересечения медиан треугольника АВС. Треугольники AOP и BOM подобны по двум углам (два угла равны по условию, еще два угла вертикальные). Тогда: Так как медианы точкой пересечения делятся в отношении 2:1, то: Если медианы, проведенные к двум сторонам треугольника равны, то и сами стороны также равны. Значит, АС=ВС и треугольник АВС равнобедренный. Рассмотрим треугольник АМС. По теореме косинусов, учитывая соотношение АС=2СМ, получим: Следовательно стороны в два раза больше: Тогда площадь треугольника найдем как половину произведения двух его сторон на синус угла между ними: ответ: 2/3
Знайдемо середини діагоналей чотирикутника
середина діагоналі AС: x=(-3+(-1))/2=-2; y=(-2+6)/2=2
середина діагоналі BD: x=(2+(-6))/2=-2; y=(1+3)/2=2
середини діагоналей даного чотирикутника збігаються, значить він є паралелограмом
По формулі відстані знайдемо довжини сторін чотирикутника ABCD
AB=корінь((2-(-3))^2+(1-(-2))^2)=корінь(25+9)=корінь(34)
BC=корінь((-1-2)^2+(6-1)^2)=корінь(9+25)=корінь(34)
CD=корінь((-6-(-1))^2+(3-6)^2)=корінь(25+9)=корінь(34)
AD=корінь((-6-(-3))^2+(3-(-2))^2)=корінь(9+25)=корінь(34)
сторони даного паралелограма рівні, тому він є ромбом.
По формулі відстані знайдемо довжини діагоналей чотирикутника ABCD
AC=корінь((-1-(-3))^2+(6-(-2))^2)=корінь(4+64)=корінь(68)
BD=корінь((-6-2)^2+(3-1)^2)=корінь(64+4)=корінь(68)
діагоналі даного паралелограма рівні, тому він є прямокутником
даний чотирикутник(паралелограм) є ромбом і прямокутником, тому він квадрат