Задачу можно решить с простейшим рисунком, советую сделать его.
Если два отрезка пересекаются в их общей середине, значит, каждый из них точкой пересечения делится пополам. Обозначим эту точку буквой М.
Соединив свободные концы А иС, В и D отрезков, получим 2 равных теугольника
СМА и ВМD. Они равны по первому признаку равенства треугольников ( если две стороны и угол между ними одного треугольника равны двум сторонам и углу между ними другого, то эти треугольники равны).
У этих треугольников равны стороны ( по половине отрезков в каждом) и вертикальный угол. Отсюда следует, что у них равны углы, лежащие против равных сторон.Равные углы при С и D являются в то же время накрестлежащими при пересечении двух прямых АС и ВD третьей (СD). Поэтому прямые АС и ВД параллельны.
Задачу можно решить с простейшим рисунком, советую сделать его.
Если два отрезка пересекаются в их общей середине, значит, каждый из них точкой пересечения делится пополам. Обозначим эту точку буквой М.
Соединив свободные концы А иС, В и D отрезков, получим 2 равных теугольника
СМА и ВМD. Они равны по первому признаку равенства треугольников ( если две стороны и угол между ними одного треугольника равны двум сторонам и углу между ними другого, то эти треугольники равны).
У этих треугольников равны стороны ( по половине отрезков в каждом) и вертикальный угол. Отсюда следует, что у них равны углы, лежащие против равных сторон.Равные углы при С и D являются в то же время накрестлежащими при пересечении двух прямых АС и ВD третьей (СD). Поэтому прямые АС и ВД параллельны.
Вычислим площадь треугольника по формуле Герона
s= √ p(p - a) (p - b) 9p - c) , где p = (10 +17 + 9)/ 2 = 18
s = √ 18*(18 - 17) (18 - 9) (18 - 10) = √ 18*1 *9 *8 = √9 * 2 * 8 * 9 = 3* 4 * 3 36