Отрезки МК и NP параллельны соседним сторонам прямоугольника, => соответственно равны им, пересекаются под прямым углом и делят АВСD на 4 прямоугольника, (неважно, равной или разной площади). Обозначим точку пересечения МК и NP буквой О.
а)
Стороны четырехугольника МNKP являются диагоналями получившихся прямоугольников и делят каждый из них пополам (свойство). Поэтому площадь MNKP равна сумме площадей этих половин, т.е. равна половине площади ABCD.
б)
Площадь выпуклого четырехугольника равна половине произведения его диагоналей на синус угла между ними.
Так как S(ABCD)=AB•CD, МК=АD и NP=AB, а sin90°=1, то S(MNKP)=MK•NP•sin90°=0,5•S(ABCD).
в)
S(MNKP)=S∆MNP+S∆NKP=0.5•MO•NP+0.5•KO•NP=0,5•NP•(MO+OK) => S(MNKP)=0,5•NP•MK =>
S(MNKP) =0,5•S(ABCD), т.к. NP=AB и МК=АD
Пусть биссектриса AE проведена к основанию BC равнобедренного треугольника ABC. Треугольник AEB будет прямоугольным, так как биссектриса AE будет одновременно являться его высотой. Боковая сторона AB будет гипотенузой этого треугольника, а BE и AE - его катетами.
По теореме Пифагора (AB^2) = (BE^2)+(AE^2). Тогда (BE^2) = sqrt((AB^2)-(AE^2)). Так как AE и медиана треугольника ABC, то BE = BC/2. Следовательно, (BE^2) = sqrt((AB^2)-((BC^2)/4)).
Если задан угол при основании ABC, то из прямоугольного треугольника биссектриса AE равна AE = AB/sin(ABC). Угол BAE = BAC/2, так как AE - биссектриса. Отсюда, AE = AB/cos(BAC/2).
2Пусть теперь проведена высота BK к боковой стороне AC. Эта высота уже не является ни медианой, ни биссектрисой треугольника. Для вычисления ее длины существует формула Стюарта.
Периметр треугольника - это сумма длин всех его сторон P = AB+BC+AC. А его полупериметр равен половине суммы длин всех его сторон: P = (AB+BC+AC)/2 = (a+b+c)/2, где BC = a, AC = b, AB = c.
Формула Стюарта для длины биссектрисы, проведенной к стороне c (то есть, AB), будет иметь вид: l = sqrt(4abp(p-c))/(a+b).
3Из формулы Стюарта видно, что биссектриса, проведенная к стороне b (AC), будет иметь такую же длину, так как b = c.