В прямоугольном параллелограмме квадрат ее диагонали равен сумме квадратов длин ее сторон.
А1С2 = АА12 + АД2 + СД2.
АА12 = А1С2 – АД2+ СД2 = 676 – 64 – 36 = 576.
АА1 = 24 см.
ответ: Боковое ребро равно 24 см.
второй
ABCDA1B1C1D1 - параллелепипед
1) основание ABCD:
в треугольнике АВС
L B = 90 град.
AB = 6 см
BC = 8 см =>
AC^2 = AB^2 + BC^2 = 6^2 + 8^2 = 100 = 10^2 =>
AC = 10 см - диагональ основания
2) В треугольнике ACC1:
L ACC1 = 90 град.
AC = 10 см
AC1 = 26 см =>
CC1 = AC1^2 - AC^2 =
= 26^2 - 10^2 =
= (26+10)(26-10) =
= 36*16 = 6^2 * 4^2 =
= (6*4)^2 = 24^2 =>
CC1 = 24 см - высота параллелепипеда
24
Объяснение:
1) Средняя линия равна полусумме оснований, следовательно:
(ВС + АD) : 2 = 21
2) Так как ВС ║ АD как основания трапеции, то ΔВLC подобен треугольнику АLD.
3) Рассчитаем коэффициент подобия, пологая, что LC = 3x, а CD = x.
LD = LC + CD = 3х + х = 4 х
Тогда коэффициент подобия равен:
LD : LC = 4х : 3 х = 4/3
4) Таким образом, если AD = 4/3 ВС, в силу чего выражение
(ВС + АD) : 2 = 21
можно записать как:
(ВС + 4/3 ВС) : 2 = 21
Находим ВС:
(ВС + 4/3 ВС) = 42
2 1/3 ВС = 42
ВС = 18
AD = ВC · 4/3 = 18 · 4/3 = 24
ответ: AD = 24
Проведем линию от центра окружности до точки А. Данная линия - биссектриса искомого угла и биссектриса угла между радиусами. В треугольнике углы - 90°, 120/2=60°, 30°. Величина искомого угла - 30*2=60°.
Можно еще проще. Сумма углов - 360°, искомый угол - 360-120-90*2=60°.