Через вершину и середины двух соседних сторон основания правильной четырехугольной пирамиды проведено сечение. вычислите его периметр если сторона основания пирамиды равна 8 м,боковое ребро 5 м
сечения имеет фору треугольника в основании лежит отрезок основания пирамиды равный стороне основания 8 м, а боковые стороны равны высоте грани пирамиды (а), периметр равен 8 + 2а;
найдем а. а делит боковую грань пирамиды на 2 равных прямоугольных треугольника (принцип равенства треугольника по 3-м сторонам). в данных треугольниках гипотенуза есть ребро пирамиды (с) и ровна 5 м, один катет половина основания пирамиды (в) и равен 4 м, следует по т.Пифагора с*с = а*а + в*в, далее 5*5 = а*а + 4*4;
Давайте без точки О. 1. Строим АК. То есть надо разделить угол А ПОПОЛАМ. Из точки А циркулем делаем засечки D и E (одним радиусом) . Затем ставим острие циркуля в точки D и E и описываем равными радиусами дуги, пересекающиеся в точке F. Прямая, соединяющая А и F делит угол А пополам. Продолжаем эту прямую до пересечения со стороной ВС и получаем точку К. 2) Строим ВМ. То есть надо разделить сторону АС пополам. Одним раствором циркуля (большим половины АС) делаем засечки с двух сторон от АС. Соединяем точки засечек. Пересечение этой прямой с АС и дает точку М - середину АС. 3)Строим СН. То есть надо опустить из точки С перпендикуляр на АВ. Из точек А и Б проводим окружности, проходящие через точку С. Соединяем точки пересечения этих окружностей. Точка пересечения этой прямой с о стороной АВ и есть точка Н.
В первой задаче пользуемся формулой: площадь треугольника равна произведению его сторон на синус угла между ними, в итоге получаем 6*6*корень из 3, деленное на 2. Решаем, получаем 18 корней из 3. Во второй задаче площадь трапеции находится по формуле: полусумма оснований умножить на высоту. Нам не известна высота, но её находим через получившийся треугольник ABH, где Н=90 гр., А=30 гр. Получается, через синус угла А находим сторону ВН, которая получается равной 8 см. И уже по формуле площади находим её: 12+20/2*8=128 см.
сечения имеет фору треугольника в основании лежит отрезок основания пирамиды равный стороне основания 8 м, а боковые стороны равны высоте грани пирамиды (а), периметр равен 8 + 2а;
найдем а. а делит боковую грань пирамиды на 2 равных прямоугольных треугольника (принцип равенства треугольника по 3-м сторонам). в данных треугольниках гипотенуза есть ребро пирамиды (с) и ровна 5 м, один катет половина основания пирамиды (в) и равен 4 м, следует по т.Пифагора с*с = а*а + в*в, далее 5*5 = а*а + 4*4;
а*а = 25-16 = 9;
а=3.
Периметр сечения равен 8 + 2*3 = 14 м