Задание 3
Так как треугольник равнобедренный то углы при его основании равны,следовательно угол 1 равен углу К и они оба равны по 48 градусов
Угол 2 называют внешним,а по определению внешний угол и смежный с ним внутренний угол в сумме равны 180 градусов,поэтому угол 2 равен
180-48=132 градуса
Задание 4
По условию МО=ОК , а углы ВМО и АКО равны между собой.
Как вертикальные,равны между собой и углы МОВ и АОК
И теперь мы можем утверждать,что треугольники МОВ и АОК равны между собой по второму признаку равенства треугольников-если сторона и два прилежащих к ней угла одного треугольника равны стороне и двум прилежащим к ней углам второго треугольника,то Треугольники равны между собой
Задание 5
Речь идёт о равнобедреном треугольники,т к по условию ВМ=ВС,
МК-биссектриса треугольника ВМС и т к точка А лежит на биссектрисе,то и в треугольнике ВАС АК тоже биссектриса и делит угол ВАС пополам,поэтому угол ВАК равен
88:2=44 градуса
Объяснение:
4. Периметр - это сумма длин всех сторон. В условии дан параллелограмм. Во всех рисунках смежные стороны отмечены, как равные, но такой параллелограмм уже превращается в ромб. т.е. достаточно найти одну сторону, чтобы ответить на вопрос, чему равен периметр.
4*15=60/м/
5. Так как это ромб, то его диагонали являются биссектрисами внутренних углов. Значит, ∠SКМ =∠SКL=60°, тогда и ∠КSl=∠SlК=60°, ΔSLК имеет равные стороны, т.е. 8м, а периметр 8*4=32/м/
6. QP⊥RM ∠RQP=30°, т.к. острые углы в прямоугольном треугольнике составляют 90°, а против угла в 30°лежит катет RP=6, который равен половине гипотенузы RQ, поэтому RQ=12, а периметр, следовательно, 12*4=48