Треугольники АВC и ADB подобны по двум углам (<BAC=<BCA, как углы при основании равнобедренного треугольника, <ABD и <BAD равны - дано). Из подобия АВ/AD=AC/AB. Или 18/12=АС/18. Отсюда АС=18*18/12=27. Тогда DC=АС-АD или DC=27-12=15.
Второй вариант решения: Треугольники АВC и ADB подобны по двум углам, значит <ABC=<ADB. Пусть <ABC=<ADB=α. Тогда по теореме косинусов из треугольника АВС: АС²=АВ²+ВС²-2*АВ*ВС*Cosα. Или АС²=2*18²(1-Cosα).(1) По теореме косинусов из треугольника АВD: АВ²=AD²+BD²-2*AD*BD*Cosα. Или 18²=12²+12²-2*12*12*Cosα. Отсюда Cosα= -1/8. Подставим это значение в (1): АС²=2*18²(1+1/8)=729. Или АС=√729=27. DC=АС-АD или DC=27-12=15. ответ: DC=15.
3) Три Соединим все три вершины. Получился треугольник, две стороны которого - стороны параллелограмма, и третья - его диагональ так как, убрав у любого параллелограмма вершину, и стороны, которые проходят через нее, получаем треугольник, состоящий из двух сторон и диаг. паралл. Выбор расположения четвертой точки зависит от выбора стороны треуг., которая будет диагональю. Тогда возможны три варианта, так как у треуг. три стороны. Чтобы построить паралл. при заданной диагонали, достаточно из концов диагонали построить прямые, параллельные сторонам, лежащим против соответствующих вершин. Точка их пересечения - четвертая вершина паралл. 2) Периметр равен 10 смотри рисунок - треуг AKM - равноб так как KM || BC => KM=AK; ML = KB Тогда ML + KM = AK + KB ML+KM=5 P = 2(ML+KM)=10
OAB и OCD вот так как то