Треугольник МНК, уголН=60, КН=8, площадьМНК=1/2*МН*КН*sin60, 10*корень3=1/2*МН*8*(корень3/2), МН=5, КМ в квадрате=МН в квадрате+КН в квадрате-2*МН*КН*cos60=25+64-2*5*8*1/2=7
1). Биссектриса СК делит угол С на два равных: АСК и КСВ. Зная угол НСК между высотой и биссектрисой, находим угол АСН:<ACH = <ACK - <HCK = 45 - 15 = 30°.В прямоугольном треугольнике АНС находим оставшийся неизвестный угол А:<A = 180 - ACH - AHC = 180 - 30 - 90 = 60°.Зная углы А и С, находим неизвестный угол В:<B = 180 - <C - <A = 180 - 90 - 60 = 30°.Зная, что катет прямоугольного треугольника, лежащий против угла в 30 градусов равен половине гипотенузы, находим АС:АС = 1/2 АВ = 1/2*14 = 7 см. 2) Поскольку в равнобедренном треугольнике углы при основании равны, находим угол А и С:<A = <C = (180 - 120) : 2 = 30°После построения высоты АН получаем прямоугольный треугольник АНС. Его неизвестный катет АН (наша высота) лежит против угла 30 градусов и равен половине гипотенузы:АН = АС : 2 = 12 : 2 = 6 см Подробнее - на -
1). Биссектриса СК делит угол С на два равных: АСК и КСВ. Зная угол НСК между высотой и биссектрисой, находим угол АСН:<ACH = <ACK - <HCK = 45 - 15 = 30°.В прямоугольном треугольнике АНС находим оставшийся неизвестный угол А:<A = 180 - ACH - AHC = 180 - 30 - 90 = 60°.Зная углы А и С, находим неизвестный угол В:<B = 180 - <C - <A = 180 - 90 - 60 = 30°.Зная, что катет прямоугольного треугольника, лежащий против угла в 30 градусов равен половине гипотенузы, находим АС:АС = 1/2 АВ = 1/2*14 = 7 см. 2) Поскольку в равнобедренном треугольнике углы при основании равны, находим угол А и С:<A = <C = (180 - 120) : 2 = 30°После построения высоты АН получаем прямоугольный треугольник АНС. Его неизвестный катет АН (наша высота) лежит против угла 30 градусов и равен половине гипотенузы:АН = АС : 2 = 12 : 2 = 6 см Подробнее - на -