Объяснение:
№5
Вариант 1.
По теореме: отрезки касательных, проведенные из одной точки к окружности, равны.
Исходя из этого:
АК=СК
ВК=DK
Так как
АВ=АК–ВК
СD=CK–KD
То:
АВ=СD.
Вариант 2.
Вариант 2.Проведём АС и BD.
По теореме: отрезки касательных, проведенные из одной точки к окружности, равны.
Тогда:
СК=АК
КВ=КD
Углы АКС и ВКD равны как вертикальные. Пусть каждый из них равен Y.
Рассмотрим треугольник АКС
СК=АК
Тогда треугольник равнобедренный с основанием АС.
Тогда угол АСК=(180–Y)÷2
Рассмотрим треугольник ВКD.
КВ=КD
Тогда треугольник равнобедренный с основанием BD
Тогда угол BDK=(180°–Y)÷2
Следовательно угол BDK=угол АСK.
Тогда АС||ВD, а углы BDC и АСD накрест-лежащие при параллельных прямых АС и ВD и секущей СD.
Задача:
Длина окружности, вписанной в правильный треугольник, равна 12π см. Найдите периметр треугольника.
Чтобы найти периметр правильного Δ, нужно знать сторону; что найти сторону, нужно найти радиус вписанной окружности.
Дня нахождения радиуса окружности, воспользуемся формулой длины окружности и выразим из нее радиус:
Теперь воспользуемся формулой радиуса вписанной окружности в правильный треугольник для нахождения стороны Δ:
Осталось за малым — периметр правильного треугольника:
Периметр треугольника равен 36√3 см.