Как известно, площадь треугольника можно вычислить в данном случае по формуле
S=AB*h/2, где h - высота, проведенная к АВ. (1)
Можно вычислить и по-другому.
S=BC*H/2, где H - высота, проведенная к ВС. H надо найти. (2)
Теперь приравняем правые части формул (1) и (2)
AB*h/2=BC*H/2
Умножим обе части на 2, получим
AB*h=BC*H (3)
По условию задачи АВ=16 см, ВС=22 см, h=11 см. Подставим все это в формулу (3)
16*11=22*Н
Сократим обе части на 11
16=2*Н
Сократим обе части на 2
Н=8.
ответ: Н=8 см- высота, проведенная к стороне ВС
1. ∠B = 80°, ∠C = 30°.
Теорема. Сумма углов любого Δ равна 180°.
Тогда ∠A + ∠B + ∠C = 180°,
∠A + 80° + 30° = 180°,
∠A = 180° - 80° - 30° = 70°.
Теорема. Против большего угла в треугольнике лежит большая сторона.
Против ∠A лежит сторона BC.
Против ∠B лежит сторона AC.
Против ∠C лежит сторона AB.
∠A = 70°, ∠B = 80°, ∠C = 30°, поэтому
AC > AB, AC > BC, и BC > AB, то есть
AB < BC < AC.
2. Треугольник существует, если выполнено неравенство треугольника: длина наибольшей стороны должна быть меньше суммы длин двух других сторон.
10м < 5м + 8м = 13м,
10м < 13м.
Итак, неравенство треугольника выполнено и треугольник со сторонами 5м, 8м и 10м существует.