Доказательство: 1) Через точку B2 проведем прямую EF, EF ∥ A1A3. 2) Рассмотрим четырехугольник A1FB2A2.- A1F ∥ A2B2 (по условию),- A1A2 ∥ FB2 (по построению).Следовательно, A1FB2A2 — параллелограмм. По св-ву противолежащих сторон параллелограмма, A1A2=FB2. 3)Аналогично доказываем, что A2B2EA3 — параллелограмм и A2A3=B2E. 4) Так как A1A2=A2A3 (по условию), то FB2=B2E. 5) Рассмотрим треугольники B2B1F и B2B3E.- FB2=B2E (по доказанному),- ∠B1B2F=∠B2EB3 =∠B2FB1=∠B2EB3. Следовательно, треугольники B2B1F и B2B3E равны.Из равенства треугольников следует равенство соответствующих сторон: B1B2=B2B3. Теорема доказана. :)
См. рисунок в приложении Пусть ребро АА₁ образует со сторонами основания АВ и AD угол в 60°. Соединяем точку А₁ с точкой D. В треугольнике АА₁D AA₁=2 м AD=1 м ∠A₁AD=60° По теореме косинусов A₁D²=AA₁²+AD²-2·AA·₁AD·cos60°=4+1-2·2·1(1/2)=3 A₁D=√3 м Треугольник A₁AD- прямоугольный по теореме обратной теореме Пифагора: АА₁²=AD²+A₁D² 2²=1+( √3 )² A₁D⊥AD В основании квадрат, стороны квадрата взаимно перпендикулярны АС⊥AD Отсюда AD⊥ плоскости A₁CD ВС || AD BC ⊥ плоскости A₁CD
ВС⊥A₁C
A₁C перпендикулярна двум пересекающимся прямым ВС и СD плоскости АВСD По признаку перпендикулярности прямой и плоскости А₁С перпендикуляр к плоскости АВСD A₁C - высота призмы A₁C=Н Из прямоугольного треугольника A₁DC: А₁С²=А₁D²-DC²=(√3)²-1=3-1=2 A₁C=Н=√2 м
Если угол при основании 45 градусов, то прямоугольный треугольник, где высота трапеции стороной этого треугольника, а бедро трапеции гипотенузой - равнобедренный, так как второй угол этого прямоугольного треугольника тоже 90-45=45 градусов. Значит, кусочек нижнего основания трапеции, отсекаемый ее высотой равен тоже 3 см. Проведем вторую высоту трапеции, тогда получим, что высоты делят большое основание на три части - две по 3 см и одна - как малое основание 5 см. Следовательно, большое основание имеет размер 3+5+3=11 см.
Если параллельные прямые отсекают на одной стороне угла равные отрезки, то они отсекают равные отрезки и на другой его стороне.
Дано:
∠COD,A1B1 ∥ A2B2 ∥ A3B3,A1, A2, A3 ∈OC, B1, B2, B3 ∈OD,A1A2=A2A3.
Доказать:
B1B2=B2B3.
Доказательство:
1) Через точку B2 проведем прямую EF, EF ∥ A1A3.
2) Рассмотрим четырехугольник A1FB2A2.- A1F ∥ A2B2 (по условию),- A1A2 ∥ FB2 (по построению).Следовательно, A1FB2A2 — параллелограмм. По св-ву противолежащих сторон параллелограмма, A1A2=FB2.
3)Аналогично доказываем, что A2B2EA3 — параллелограмм и A2A3=B2E.
4) Так как A1A2=A2A3 (по условию), то FB2=B2E.
5) Рассмотрим треугольники B2B1F и B2B3E.- FB2=B2E (по доказанному),- ∠B1B2F=∠B2EB3 =∠B2FB1=∠B2EB3.
Следовательно, треугольники B2B1F и B2B3E равны.Из равенства треугольников следует равенство соответствующих сторон: B1B2=B2B3.
Теорема доказана. :)