Тут всё довольно просто. Так как ABCD - параллелограмм, вспомним свойство такой геометрической фигуры: диагонали параллелограмма точкой пересечения делятся пополам. Т.е. диагонали AC и BD делятся точкой пересечения O пополам. Соответственно DO будет равняться половине всей диагонали BD. (и из этого следует, что DO = OB)
1) угол BAC=42-вписанный и опирается на дугу СВ, следовательно, по свойству вписанного угла, дуга СВ=2*42=84 Угол BOC-центральный и опирается на дугу СВ, следовательно, по свойству центрального угла, угол ВОС=дуге СВ=84
2) угол МОС = 90 Дуга СД- полуокружность =180 Из этих двух следует, что дугаСМ=дуге МД= 90 ( по свойству центрального угла)
Угол МСД вписанный и опирается на дугу МД=90, следовательно, угол МСД=45 (по свойству вписанного угла)
Угол МДС вписанный и опирается на дугу МС=90, следовательно, угол МДС = 45 (по свойству вписанного угла)
Объяснение:
Дано:
ABCD - параллелограмм.
AC и BD - диагонали параллелограмма.
AC ∩ BD = O.
AC = 12 (см); BD = 20 (см); AB = 7 (см).
Найти:
DO - ? (см).
Тут всё довольно просто. Так как ABCD - параллелограмм, вспомним свойство такой геометрической фигуры: диагонали параллелограмма точкой пересечения делятся пополам. Т.е. диагонали AC и BD делятся точкой пересечения O пополам. Соответственно DO будет равняться половине всей диагонали BD. (и из этого следует, что DO = OB)
DO = BD/2 = 20 : 2 = 10 (см)