1. Соединим точки С и D с центром. Тогда треугольники AOD и ВОС равнобедренные (OA = OB = OC = OD как радиусы), ⇒
∠1 = ∠2 и ∠3 = ∠4.
∠2 = ∠3 как накрест лежащие при пересечении параллельных прямых AD и ВС секущей АВ. Но тогда в этих треугольниках равны и углы при вершине О. Значит треугольники AOD и ВОС равны по двум сторонам и углу между ними, ⇒
AD = BC.
2. Точки, находящиеся на данном расстоянии от данной прямой а, будут расположены на прямой, параллельной прямой а (красные прямые). В зависимости от расположения прямых задача может иметь одно решение (1), два решения (2) и не иметь решения (3).
Биссектриса внутреннего угла треугольника делит противоположную сторону в отношении прилежащих сторон, образующих этот угол. Найдем длины сторон АС и ВС как модули векторов, по координатам их конца и начала.
|AC| = √((Xc-Xa)²+(Yc-Ya)²) или |AC| =√(3²+0) =3 ед.
|BC| = √((Xc-Xb)²+(Yc-Yb)²) или |BC| =√((-6)²+(-8)²) =10 ед.
Отношение сторон: k = AC/BC = 3/10 =0,3.
Координаты точки, делящей отрезок АВ, заданный координатами его начала и конца, в данном отношении k, считая от точки А (при отношении k=0,3, считая от точки А) найдем по формулам:
Xd = (Xa+k*Xb)/(1+k) и Yd = (Ya+k*Yb)/(1+k).
В нашем случае: Xd = (-1+0,3*8)/1,3) ≈ 1,08. Yd = (2+1,8)/1,3≈2,92.
ответ: D(1,08;2;92).
P.S. Рисунок для наглядности.