если диагональ равна стороне, рассматримаем два равносторонних треугольника со стороной 14см. Площадь одного треугольника (корень квадратный из 3 :4) *а2
v3/4 * 14*14=49V3 Площадь параллелограмма 2*49V3=98V3
Пусть О - точка пересечения медиан.
Если взглянуть на хорошо нарисованный чертеж (то есть такой, где медианы треугольника взаимно перпендикулярны), можно увидеть три прямоугольных треугольника (их там больше, но нам только эти нужны) АОВ, АОЕ и BOD.
если обозначить КОРОТКИЕ ОТРЕЗКИ медиан, как y и z (ОD = z, при этом по свойству медиан ОА = 2*z, и так же OE = y, поэтому ОВ = 2*y), а неизвестную сторону АВ = х, то из этих треугольников сразу получается 3 равенства:
(2*y)^2 + (2*z)^2 = x^2; то есть х^2 = 4*(y^2 + z^2);
z^2 + (2*y)^2 = BD^2 = 4;
(2*z)^2 + y^2 = AE^2 = (3/2)^2 = 9/4;
Два последних уравнения можно честно решить, найти y и z, и вычислить х. Но раз нам надо только найти сумму квадратов y и z, можно сложить эти 2 последних уравнения, и мы сразу получим ответ.
5*(y^2 + z^2) = 4 + 9/4 = 25/4; (y^2 + z^2) = 5/4; x^2 = 5;
ответ: АВ = корень(5)
Пусть О - точка пересечения медиан.
Если взглянуть на хорошо нарисованный чертеж (то есть такой, где медианы треугольника взаимно перпендикулярны), можно увидеть три прямоугольных треугольника (их там больше, но нам только эти нужны) АОВ, АОЕ и BOD.
если обозначить КОРОТКИЕ ОТРЕЗКИ медиан, как y и z (ОD = z, при этом по свойству медиан ОА = 2*z, и так же OE = y, поэтому ОВ = 2*y), а неизвестную сторону АВ = х, то из этих треугольников сразу получается 3 равенства:
(2*y)^2 + (2*z)^2 = x^2; то есть х^2 = 4*(y^2 + z^2);
z^2 + (2*y)^2 = BD^2 = 4;
(2*z)^2 + y^2 = AE^2 = (3/2)^2 = 9/4;
Два последних уравнения можно честно решить, найти y и z, и вычислить х. Но раз нам надо только найти сумму квадратов y и z, можно сложить эти 2 последних уравнения, и мы сразу получим ответ.
5*(y^2 + z^2) = 4 + 9/4 = 25/4; (y^2 + z^2) = 5/4; x^2 = 5;
ответ: АВ = корень(5)
...............................