ответ:1)28,5см 36,5см
33°,33°,147°147°
3)65°,65°,115°,115°
Объяснение:1)Пусть АВ=х см,тогда ВС=х+8 см
Р=2(АВ+ВС)
130=2(АВ+ВС)
АВ+ВС=65
х+х+8=65
2х=57
х=28,5
АВ=СД=28,5см т к противоположные стороны равны
ВС=АД=28,5+8=36,5см т к противоположные стороны равны
2)<А=<С=33° т к противоположные углы параллелограмма равны
Сумма углов прилежащих к одной стороне равна 180°
Значит <В=180-<А=180-33=147°
<В=<Д=147* как противоположные
3)<А+<С=130° по условию
Т к в параллелограмме противоположные углы равны то <А=<С=130:2=65°
Сумма углов параллелограмма равна 360°
Тогда <В+<Д=360-130=230* тогда
<В=<Д=230:2=115* как противоположные
Обозначим противоположные параллельные стороны параллелограмма: нижнее и верхнее за (а) каждую, а боковые стороны за(с) каждую.
Тогда периметр Р=2а+2с или 30=2а+2с (запомним это уравнение)
Площадь S=a*h или 36=a*h
Синус острого угла равен отношения катета (а он является высотой параллелограмма h) к гипотенузе (к боковой стороне с)
sinα=2/3 или 2/3=h/c
Из площади параллелограмма и sinα можно найти (h)^
36=a*h h=36/a
2/3=h/c h=2*c/3
Приравняем величины (h):
36/а=2с/3 (запоминаем и это уравнение:
Решим систему уравнений:
30=2а+2с
36/а=2с/3
30=2а+2с (разделим каждый член уравнения на (2)
36*3=2с*а
15=а+с
108=2ас
Из первого уравнения системы найдём значение (а)
а=15-с
Подставим значение (а) во второе уравнение:
108=2*(15-с)*с
108=30с-2с²
2с²-30с+108=0
с1,2=(30+-D)/2*2
D=√(900-4*2*108)=√(900-864)=√36=6
c1,2=(30+-6)/4
с1=(30+6)/4=36/4=9
с2=(30-6)/4=24/4=6
В данном случае оба значения положительные, поэтому могут быть боковыми сторонами параллелограмма
Примем боковую сторону параллелограмма с=9(см)
Подставим с=9 в а=15-с
а=15-9=6 (см) -верхние и нижние стороны параллелограмма
Если мы примем боковую строну с, равную 6см, то а=15-6=9см
То есть в данном параллелограмме боковые стороны могут по 6см, а нижнее и верхнее основания по 9см. Оба ответа являются правильными.
ответ: Стороны параллелограмма: боковые 9см; вернее и нижнее основания 6см