S тр ABCD=(AD+BC)/2*CH , CH-это высота а (AD+BC)/2-средняя линия трап , из этого следует . 45=9*СH . CH= 5 а так как против угла в 30 град лежит катет = половине гипотенузе , т.е CH-это катет ,CD-гипотенуза , из этого следует СD=10
Дано: ΔАВС -прямоугольный, окружность с центром О, АС=5, ВС=12. Решение: АО=ОК=R - радиусы окружности проведем еще один радиус R в точку касания Н. следует знать теорему: "Радиус, проведенный в точку касания перпендикулярен самой касательной." То есть ∠ОНВ=90° по теореме Пифагора найдем гипотенузу АВ АВ=√(АС²+ВС²)=√(5²+12²)=13 Если АВ=13 и АО=R, то ОВ=АВ-АО=13-R рассмотрим ΔАВС и ΔВОН ∠АСВ=∠ОНВ=90° ∠АВС -общий, следовательно треугольники подобны по двум углам. Если треугольники подобны, то можно составить пропорцию
Т.к. периметры подобных треугольников относятся как длины соответствующих сторон, то, например, для указанных в задаче средних по величине сторон справедливо такое же отношение как и для периметров треугольников, т.е. 3:4. Пусть а,b,c и А, В, С - соответствующие стороны подобных треугольников. Из сказанного выше следует, что b:B=3:4. Отсюда По условию b+B=112. Решим уравнение: Пусть для одно из треугольников a:b:c=4:8:7. Тогда на длину 48 приходится 8 равных частей (всего частей 4+8+7=19). Одна часть равна 48:8=6. Отсюда а=4*6=24 и с=7*6=42. Стороны одно из треугольников найдены и равны 24; 48 и 42. Стороны второго треугольника больше в раза соответствующих сторон первого треугольника. Найдем их. Стороны другого треугольника тоже найдены и равны 32; 64 и 56. ответ: 24; 48; 42 и 32; 64; 56.
S тр ABCD=(AD+BC)/2*CH , CH-это высота а (AD+BC)/2-средняя линия трап , из этого следует . 45=9*СH . CH= 5 а так как против угла в 30 град лежит катет = половине гипотенузе , т.е CH-это катет ,CD-гипотенуза , из этого следует СD=10
ОТВЕт CD=10