Объяснение:
Найдем ∠АОD=360°-π/3-π/6-3π/4=360°-60°-30°-135°=135° .
Для удобства обозначим отрезки ОА=а, ОВ=в, ОС=у, OD=х. Воспользуемся формулой площади треугольника S=0,5*а*в*sin(a,в) для всех 4-х треугольников
1)S(АОВ)=0,5*а*в*sin(a,в) , 20= 0,5*а*в*sin60 , а*в=80/√3, в=80/(а√3) ;
2)S(ВОС)=0,5*в*у*sin(в,у) , 5= 0,5*в*у*sin30 , в*у=20 ;
3)S(СOD)=0,5*х*у*sin(a,в) , 10√3= 0,5*а*в*sin135 , х*у=40√(3/2) ;
4)S(АOD)=0,5*х*а*sin(х,а) , S(АOD)=0,5*ах*sin135 , S(АOD)= 0,5*а*х*√2/2
5) матрешки
в=80/(а√3) → в*у=20 , 80/(а√3) *у=20 , у=а√3/4 ;
у=а√3/4 → х*у=40√(3/2) , х* (а√3/4) =40√(3/2) , х=160√2/(2а) ;
х=160√2/(2а) → S(АOD)=0,5*а*х*√2/2=0,5*а*160√2/(2а) *(√2/2)=40.
1200√3 см²
Объяснение:
Дано: КСМТ - трапеція, КС=МТ, ∠КМТ=90°, КМ - бісектриса, ОМ=КО=ОТ=40 см. Знайти S(КСМТ).
∠КМТ - прямий, отже він спирається на діаметр описаного кола, тоді КТ=КО+ОТ=80 см.
∠СКМ=∠ТКМ за умовою, ∠СМК=∠ТКМ як внутрішні при СМ║КТ і січній КМ, отже ∠КСМ=∠СКМ, а ΔКСМ - рівнобедрений, КС=СМ.
Проведемо радіус ОМ=40 см, ΔКОМ=ΔКСМ за двома кутами і спільною стороною, отже КС=СМ=КО=ОМ=40 см.
МТ=КС=40 см.
ΔОМТ - рівнобедрений, проведемо МН - висоту і медіану.
ОН=ТН=40:2=20 см
За теоремою Піфагора МН=√(МТ²-ТН²)=√(1600-400)=√1200=20√3 см.
S(КСМТ)=(СМ+КТ):2*МН=(40+80):2*20√3=1200√3 см²
Чертеж + решение во вложении.