ответ:1) Тело, полученное вращением равностороннего треугольника АВС вокруг прямой, проходящей через вершину А, перпендикулярной стороне АВ
2) Тело, полученное вращением тупоугольного равнобедренного треугольника вокруг прямой содержит основание треугольника
3) Тело, полученное вращением прямоугольной трапеции вокруг прямой содержащую меньшую боковую сторону
4) Тело, полученное вращением прямоугольной трапеции вокруг прямой содержащее большее основание
5) Тело, полученное вращением ромба вокруг прямой, содержащее сторону ромба
Объяснение:
ответ: 40 (ед. длины)
Объяснение:
Основания трапеции параллельны, боковые стороны при них - секущие, поэтому сумма внутренних углов трапеции при боковой стороне равна 180°.
Биссектрисы этих углов делят их пополам, следовательно, сумма этих половин 180°:2=90°. ⇒ В ∆ AFB из суммы углов треугольника ∠AFB=180°-90°=90°. ∆ АВF - прямоугольный. По т.Пифагора АВ=√(AF²+BF²)=√(24²+32²)=40 (ед. длины)