АВС - прямоугольный тр-ник, угол В прямой, АС - гипотенуза. ВМ - медиана.
Медиана делит сторону, к которой она проведена, пополам. Значит АМ = МС.
В прямоугольном тр-нике медиана, проведенная к гипотенузе, равна ее половине, т.е.
ВМ = ВМ = СМ = 10 см, тогда гипотенуза АС = 20 см.
Медиана ВМ делит прямой угол в отношении 1 : 2, значит
угол АВМ = 90 : 3 * 2 = 60 градусов
угол СВМ = 90 - 60 = 30 градусов.
Тр-ник АМВ - равнобедренный, поскольку АМ = ВМ, АВ - основание.
Углы при основании равны, т.е. угол МАВ = МВА = 60, тогда угол АМВ = 180 - 60 * 2 = 60.
Значит тр-ник АМВ равносторонний, АВ = 16 см.
Меньшая средняя линия параллельна меньшей стороне (АВ) и равна ее половине, т.е. 8 см.
1) биссектриса делит угол пополам
Внутренние накрест лежащие углы равны. Получаем равнобедренный треугольник со стороной 4
Вторая биссектриса как биссектриса равнобедренного треугольника является одновременно и высотой этого треугольника
2) Аналогичное рассуждение относительно второй биссектрисы.
3) Обе биссектрисы разбивают параллелограмм на три равных прямоугольных треугольника. Соединяем точки К и М получаем ромб со стороной 4 и параллелограмм со стороной 3 и 4
S (ромба)=4·4·sinα=16 sin α ⇒ S (Δ AOB)=1/4· S( ромба)= 4 sinα
S( параллелограмма КСDM)=3·4·sin α=12 sin α
S ( пятиугольника)=4sin α+12 sinα=16 sin α
S(пятиугольника): S (Δ AOB)= 16 sin α : 4 sin α= 4
ответ. В 4 раза