ВС и СD- касательные, проведенные из точки С Отрезки касательных, проведенных из одной точки, равны. ВС=CD=5 Треугольник ВСD - равнобедренный. Высота СК является и медианой. ВК=KD= 4 и биссектрисой ∠1=∠2 sin ∠1=4/5=0,8
Значит и вторые острые углы прямоугольных треугольников ОВС и ОВD равны между собой:∠3=∠4
Треугольник BOD - равнобедренный ∠3=∠4 значит и вторые углы равны, обозначим их также ∠1=∠2
BC | | AD BO ⊥ ВС значит BO⊥ AD Продолжим радиус BO до пересечения с AD, получим точку N Диаметр, перпендикулярный хорде, делит хорду пополам AN=ND Из прямоугольного треугольника BND: ND= BD·sin∠1=8·0,8=6,4 м AD=2·6,4=12,8 м
ВС=СD=5, как касательные из одной точки. ВЕ - перпендикуляр в точку касания и делит AD пополам (свойство). Опустим перпендикуляр СН из точки С на AD. Тогда СН=ВЕ. Из прямоугольного треугольника НСD по Пифагору CН²=CD²-HD². Из прямоугольного треугольника ВЕD по Пифагору ВЕ²=ВD²-ЕD². Итак, CD²-HD²=ВD²-ЕD². Пусть ED = Х. Тогда HD=Х-5 (так как ЕН=ВС=5). Имеем уравнение: CD²-HD²=ВD²-ЕD² или 5²-(Х-5 )²=8²-Х² или 25-Х²+10Х-25=64-Х² или 10Х=64. Отсюда Х=6,4. Тогда CD=2Х = 12,8. ответ: CD=12,8.
Найлем для начало стороны AB=√(8-4)^2+(2-6)^2 =√ 16 +16=2√8CD=√(-2-4)^2+(-1+3)^2 =√36+4 =√40 BC=√(4-8)^2+(-3-2)^2=√16+25=√41AD=√(-2-4)^2+(-1-6)^2=√36+49=√85 на рисунке можно видеть что это трапеция выходит, можно раздлить эту трапецию на два треугольника затем найти площадь каждой и суммировать Площадь треугольника S=ab/2*sinaнайдем угол между АВ и AD через скалярAB {4;-4}AD{-6;-7}cosa=4*-6+ 4*7 / √32*85 = 4/√2720теперь sina=√1-16/2720=52/√2720теперь площадь S= 52/√2720 * √2720/2 = 26 теперь площадь другого треугольника опять угол B (8; 2), C (4; -3), D (-2; -1) ВС={-4;-5} CD={-6;2} cosa= 24-10/√1640 = 10/√1640 sina = √1-100/1640 = √1540/1640 S=√41*40/2 * √1540/1640 =√1540/2 = √385 S=√385+26 площадь искомая
См. рисунок в приложении. Обозначим стороны прямоугольника MK=CN=х и MC=KN=у Тогда S(прямоугольника)=x·y Из подобия прямоугольных треугольников АВС и AKM AM:AC=MK:CB
5x=8(5-y) 5x=40-8y x=(40-8y)/5
S=(40-8y)·y/5 S(y)=(40y-8y²)/5 Исследуем эту функцию на экстремум. Находим производную. S`(y)=(40-16y)/5 Приравниваем ее к нулю 40-16у=0 у=2,5- точка максимума, так как производная при переходе через эту точку меняет знак с + на - слева от точки 2,5: S`(1)=34/5 >0 справа от точки 2,5: S`(4)=-24/5<0
x=(40-8y)/5=(40-8·2,5)/5=4 ответ. S=4·2,5=10 кв см - наибольшая площадь
Отрезки касательных, проведенных из одной точки, равны.
ВС=CD=5
Треугольник ВСD - равнобедренный. Высота СК является и медианой.
ВК=KD= 4
и биссектрисой ∠1=∠2
sin ∠1=4/5=0,8
Значит и вторые острые углы прямоугольных треугольников ОВС и ОВD равны между собой:∠3=∠4
Треугольник BOD - равнобедренный
∠3=∠4 значит и вторые углы равны, обозначим их также ∠1=∠2
BC | | AD
BO ⊥ ВС
значит BO⊥ AD
Продолжим радиус BO до пересечения с AD, получим точку N
Диаметр, перпендикулярный хорде, делит хорду пополам
AN=ND
Из прямоугольного треугольника BND:
ND= BD·sin∠1=8·0,8=6,4 м
AD=2·6,4=12,8 м