М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
nadezhda980
nadezhda980
27.01.2022 16:49 •  Геометрия

Стороны параллельна равны 65 и 10. высота опущенная на меньшую сторону равны 39 найдите высоту опущенную на большую сторону параллеграмма

👇
Ответ:
Lina111334
Lina111334
27.01.2022
Площадь параллелограмма равна произведению высоты на сторону, к которой она проведена. 
Меньшая сторона по условию 10,  Тогда площадь 
Ѕ=39*10=390
Но в то же время 
Ѕ=h*65=390 ⇒
h=390:65=6 ( ед. длины)
Стороны параллельна равны 65 и 10. высота опущенная на меньшую сторону равны 39 найдите высоту опуще
4,7(18 оценок)
Открыть все ответы
Ответ:
ddddsfvxsf
ddddsfvxsf
27.01.2022

1 б,в

2Вход

Теоретические материалы

Планиметрия

Глава 1. Треугольники

1.3. Три признака равенства треугольников

Определение

Два треугольника, которые можно совместить наложением, называются равными.

Из определения непосредственно следует: в равных треугольниках против равных сторон лежат равные углы и обратно — против равных углов лежат равные стороны.

Теорема 1 (первый признак равенства треугольников — по двум сторонам и углу между ними)

Если две стороны и угол между ними одного треугольника соответственно равны двум сторонам и углу между ними другого треугольника, то такие треугольники равны.

Дано: треугольник ABC и треугольник A_1B_1C_1, AB=A_1B_1, AC=A_1C_1, <А=<А_1

Требуется доказать: треугольник ABC равен треугольнику A_1B_1C_1.

Доказательство:

Доказывается наложением одного из треугольников на другой. Треугольники полностью совместятся, следовательно, по определению они равны.

3

Логин

Пароль

Вход

Теоретические материалы

Планиметрия

Глава 1. Треугольники

1.3. Три признака равенства треугольников

Определение

Два треугольника, которые можно совместить наложением, называются равными.

Из определения непосредственно следует: в равных треугольниках против равных сторон лежат равные углы и обратно — против равных углов лежат равные стороны.

Теорема 1 (первый признак равенства треугольников — по двум сторонам и углу между ними)

Если две стороны и угол между ними одного треугольника соответственно равны двум сторонам и углу между ними другого треугольника, то такие треугольники равны.

Дано: треугольник ABC и треугольник A_1B_1C_1, AB=A_1B_1, AC=A_1C_1, \angle{A}=\angle{A_1}.

Требуется доказать: треугольник ABC равен треугольнику A_1B_1C_1.

Доказательство:

Доказывается наложением одного из треугольников на другой. Треугольники полностью совместятся, следовательно, по определению они равны.

\boxtimes

Теорема 2 (второй признак равенства треугольников — по стороне и двум прилежащим углам)

Если сторона и два прилежащих к ней угла одного треугольника соответственно равны стороне и двум прилежащим к ней углам другого треугольника, то такие треугольники равны.

Сделайте чертеж, запишите, что дано и что требуется доказать, и докажите наложением треугольников.

4 х-основание

х+х+3+х+3=36

3х=30

х=10

10+3=13 см-боковые стороны

4,6(14 оценок)
Ответ:
Arestan
Arestan
27.01.2022

ну, раз вы второй раз публикуете, я второй раз помещу решение :

 

1.Пусть стороны АВ = с, AC = b, BC = a;

Рассмотрим треугольник AMP. Ясно, что он подобен исходному ABC, и АМ = с - а;

Значит, пропорция (в отношении сторон) равна (c - a)/c, и АР = b*(c - a)/c, откуда

РС = b - b*(c - a)/c = b*(1 - (c - a)/c)) = b*a/c;

Ровно так же (с точностью до замены  a <-> b) доказывается СК = a*b/c; ч.т.д.

 

2. Тут муторнее :(((. Нужно выполнить следующие построения. 

Провести ЕВ1 II АВ, EB1 = AB, треугольник ЕВ1С равнобедренный,

и в нем угол СЕВ1 = угол ВАС, это угол при вершине.

Теперь надо соединить В и В1 и в ПАРАРЛЛЕЛОГРАММЕ АЕВ1В провести "среднюю" линию ММ1 II AB; ясно, что она поделит ВВ1 пополам.

Вобщем-то, все эти построения сводятся к тому, чтобы доказать параллельность АС и КР, где Р - середина СВ1. Это уже видно, поскольку КР II ВВ1 как средняя линяя, а ВВ1 II АС (потому что АЕВ1В - параллелограмм). 

Отсюда уже видно, что и МЕРК - параллелограмм, и угол СЕР = 20 градусов, а угол СЕВ1 = 40 градусов, и это - ответ :)))

 

без чертежа очень сложно объяснять :((( 

4,5(1 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ