М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
LANOVI
LANOVI
21.06.2020 18:51 •  Геометрия

Высота равнобедренного треугольника равна 20 см, а его основание - 30 см. найдите боковую сторону данного треугольника.

👇
Ответ:
nuk890
nuk890
21.06.2020
В равнобедренном треугольнике высота является медианой,т.е. делит основание пополам, 
Значит, проведя высоту, получи прямоугольные треугольники с катетами равными 20 см и 30/2=15 см.
Найдем боковую сторону по теореме Пифагора
\sqrt{20^2+15^2}= \sqrt{400+225} =\sqrt{625} =25
4,8(84 оценок)
Открыть все ответы
Ответ:

На сторонах АВ, ВС и СА треугольника АВС отмечены соответственно точки P, Q и R. Известно, что AP : PB = BQ : QC = CR : RA = 4, а площадь треугольника АВС равна 25 кв.см. Чему равна площадь треугольника PQR (в кв.см)?


Проведем ВВ₁⊥АС и РР₁⊥АС.

ΔАВВ₁ подобен ΔАРР₁ по двум углам (угол при вершине А общий, ∠АР₁Р = ∠АВ₁В = 90°), ⇒

РР₁ : ВВ₁ = АР : АВ = 4 : 5

РР₁ = 4/5 ВВ₁

AR = 1/5 AC

Sapr = 1/2 AR · PP₁ = 1/2 · 1/5 AC · 4/5 BB₁ = 4/25 (1/2 AC · BB₁) = 4/25 · Sabc


Проведем QQ₁⊥AC.

ΔСQQ₁ подобен ΔСВВ₁ по двум углам.

QQ₁ : BB₁ = CQ : CB = 1 : 5

QQ₁ = 1/5 BB₁

RC = 4/5 AC

Scqr = 1/2 RC · QQ₁ = 1/2 · 4/5 AC · 1/5 BB₁ = 4/25 (1/2 AC · BB₁) = 4/25 · Sabc


Проведем АА₁⊥ВС и РР₂⊥ВС.

ΔАА₁В подобен ΔРР₂В по двум углам.

РР₂ : АА₁ = РВ : АВ = 1 : 5

РР₂ = 1/5 АА₁

BQ = 4/5 BC

Sbpq = 1/2 BQ · PP₂ = 1/2 · 4/5 BC · 1/5 AA₁ = 4/25 (1/2 BC · AA₁) = 4/25 · Sabc


Spqr = Sabc - Sapq - Scqr - Sbpq = Sabc - 3 · 4/25 Sabc = Sabc - 12/25 Sabc = 

= 13/25 Sabc

Spqr = 13/25 · 25 = 13 см²

4,8(60 оценок)
Ответ:
Решено с теореме Пифагорой

Объяснение:

Обозначим данный по условию треугольник АВС, АВ = 36 см, ВС = 29 см, АС = 25 см. Высота СН делит сторону АВ на отрезки ВН = х см, и АН = 36 – х см.

Высота СН разделила треугольник АВС на два прямоугольных треугольника: ВСН и АСН. В каждом из них запишем СН по теореме Пифагора.

CH² = AC² - AH² = 25² – (36 – x)² = 625 – 1296 + 72x – x² = 72x – x² - 671

CH² = BC² - BH² = 29² - x² = 841 – x².

Получаем уравнение:

72x – x² - 671 = 841 – x²

72х = 1512

х = 21 (см) – отрезок ВН.

CH = √(BC² - BH²) = √(841 – 441) = √400 = 20 (см).

ответ: высота СН равна 20 см.
4,4(25 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ